Skip to main content
Log in

Etomidate Mitigates Lipopolysaccharide-Induced CD14 and TREM-1 Expression, NF-κB Activation, and Pro-inflammatory Cytokine Production in Rat Macrophages

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study was aimed at investigating the effect of etomidate on the viability of rat macrophages and the function of lipopolysaccharide (LPS)-stimulated macrophages as well as the potential mechanisms. Rat macrophages were isolated and treated with different doses of etomidate for 24 h, and their viability was determined by the CCK-8 assay. Furthermore, macrophages were treated with, or without, 1 μg/ml of LPS, and/or 2.5 or 5 μM etomidate in the presence or absence of a TREM-1 inhibitor (LP17, 100 ng/ml), and the levels of TNF-α, IL-6, CD14, and TREM-1 in the different groups of cells were determined by quantitative RT-PCR, ELISA, and Western blot assays. The levels of NF-κB activation in the different groups of cells were analyzed by an electrophoretic mobility shift assay (EMSA). Etomidate at 31.25 μM or a low dose did not affect the viability of rat macrophages, while etomidate at higher doses reduced the viability of macrophages in vitro. Treatment with 2.5 or 5 μM etomidate or with LP17 alone did not affect the levels of TNF-α, IL-6, CD-14, and TREM-1 in macrophages. Treatment with etomidate significantly mitigated LPS-stimulated TNF-α, IL-6, CD-14, and TREM-1 expression (p < 0.05 for all) and inhibited LPS-induced NF-κB activation in macrophages in vitro. However, treatment with both etomidate and LP17 did not enhance the inhibitory effects in macrophages. Hence, etomidate mitigates LPS-up-regulated pro-inflammatory cytokine production and inhibits LPS-enhanced CD14 and TREM-1 expression and NF-κB activation in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Du, B., Y. An, Y. Kang, X. Yu, M. Zhao, X. Ma, et al. 2013. Characteristics of critically ill patients in ICUs in mainland China. Critical Care Medicine 41: 84–92.

    Article  PubMed  Google Scholar 

  2. Forman, S.A. 2011. Clinical and molecular pharmacology of etomidate. Anesthesiology 114: 695–707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chan, C.M., A.L. Mitchell, and A.F. Shorr. 2012. Etomidate is associated with mortality and adrenal insufficiency in sepsis: a meta-analysis*. Critical Care Medicine 40: 2945–2953.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y., R. Li, J. Zhu, Z. Wang, S. Lv, and J.Y. Xiong. 2015. Etomidate increases mortality in septic rats through inhibition of nuclear factor kappa-B rather than by causing adrenal insufficiency. The Journal of Surgical Research 193: 399–406.

    Article  CAS  PubMed  Google Scholar 

  5. Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews Immunology 8: 776–787.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rossol, M., H. Heine, U. Meusch, D. Quandt, C. Klein, M.J. Sweet, et al. 2011. LPS-induced cytokine production in human monocytes and macrophages. Critical Reviews in Immunology 31: 379–446.

    Article  CAS  PubMed  Google Scholar 

  7. Bryant, C.E., D.R. Spring, M. Gangloff, and N.J. Gay. 2010. The molecular basis of the host response to lipopolysaccharide. Nature Reviews Microbiology 8: 8–14.

    CAS  PubMed  Google Scholar 

  8. Bouchon, A., F. Facchetti, M.A. Weigand, and M. Colonna. 2001. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410: 1103–1107.

    Article  CAS  PubMed  Google Scholar 

  9. Gibot, S., M.N. Kolopp-Sarda, M.C. Bene, P.E. Bollaert, A. Lozniewski, F. Mory, et al. 2004. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. The Journal of Experimental Medicine 200: 1419–1426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gibot, S., C. Buonsanti, F. Massin, M. Romano, M.N. Kolopp-Sarda, F. Benigni, et al. 2006. Modulation of the triggering receptor expressed on the myeloid cell type 1 pathway in murine septic shock. Infection and Immunity 74: 2823–2830.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gibot, S., C. Alauzet, F. Massin, N. Sennoune, G.C. Faure, M.C. Bene, et al. 2006. Modulation of the triggering receptor expressed on myeloid cells-1 pathway during pneumonia in rats. The Journal of Infectious Diseases 194: 975–983.

    Article  CAS  PubMed  Google Scholar 

  12. Gibot, S., F. Massin, C. Alauzet, C. Montemont, A. Lozniewski, P.E. Bollaert, et al. 2008. Effects of the TREM-1 pathway modulation during mesenteric ischemia-reperfusion in rats. Critical Care Medicine 36: 504–510.

    Article  CAS  PubMed  Google Scholar 

  13. Schenk, M., A. Bouchon, F. Seibold, and C. Mueller. 2007. TREM-1—expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. The Journal of Clinical Investigation 117: 3097–3106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Liu, S., X. Zhu, Y. Liu, C. Wang, S. Wang, X. Tang, et al. 2011. Endotoxin tolerance of adrenal gland: attenuation of corticosterone production in response to lipopolysaccharide and Adrenocorticotropic hormone. Critical Care Medicine 39: 518–526.

    Article  CAS  PubMed  Google Scholar 

  15. Wu, R.S., K.C. Wu, J.S. Yang, S.M. Chiou, C.S. Yu, S.J. Chang, et al. 2011. Etomidate induces cytotoxic effects and gene expression in a murine leukemia macrophage cell line (RAW264.7). Anticancer Research 31: 2203–2208.

    CAS  PubMed  Google Scholar 

  16. Zhang, X., J. Xiong, Y. Jiao, G. Wang, and Z. Zuo. 2010. Involvement of mitochondrial ATP-sensitive potassium channels in etomidate preconditioning-induced protection in human myeloid HL-60 cells. Environmental Toxicology and Pharmacology 29: 320–322.

    Article  CAS  PubMed  Google Scholar 

  17. Nathan, C. 2002. Points of control in inflammation. Nature 420: 846–852.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, G.J., T.L. Chen, Y.F. Ueng, and R.M. Chen. 2008. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation. Toxicology and Applied Pharmacology 228: 105–113.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, G.J., T.L. Chen, C.C. Chang, and R.M. Chen. 2009. Propofol suppresses tumor necrosis factor-alpha biosynthesis in lipopolysaccharide-stimulated macrophages possibly through downregulation of nuclear factor-kappa B-mediated toll-like receptor 4 gene expression. Chemico-Biological Interactions 180: 465–471.

    Article  CAS  PubMed  Google Scholar 

  20. Schulz, M., and A. Schmoldt. 2003. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Die Pharmazie 58: 447–474.

    CAS  PubMed  Google Scholar 

  21. Chiche, L., J.M. Forel, G. Thomas, C. Farnarier, F. Vely, M. Blery, et al. 2011. The role of natural killer cells in sepsis. Journal of Biomedicine & Biotechnology 2011: 986491.

    Article  Google Scholar 

  22. Liu, Z.G. 2005. Molecular mechanism of TNF signaling and beyond. Cell Research 15: 24–27.

    Article  CAS  PubMed  Google Scholar 

  23. Jawan, B., Y.H. Kao, S. Goto, M.C. Pan, Y.C. Lin, L.W. Hsu, et al. 2008. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-kappaB translocation. Toxicology and Applied Pharmacology 229: 362–373.

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi, T., M. Kishiwada, K. Fujii, H. Yuasa, J. Nishioka, M. Ido, et al. 2006. Lipopolysaccharide-induced decreased protein S expression in liver cells is mediated by MEK/ERK signaling and NFkappaB activation: involvement of membrane-bound CD14 and toll-like receptor-4. Journal of Thrombosis and Haemostasis: JTH 4: 1763–1773.

    Article  CAS  PubMed  Google Scholar 

  25. Haselmayer, P., L. Grosse-Hovest, P. von Landenberg, H. Schild, and M.P. Radsak. 2007. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 110: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  26. Netea, M.G., T. Azam, G. Ferwerda, S.E. Girardin, S.H. Kim, and C.A. Dinarello. 2006. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. Journal of Leukocyte Biology 80: 1454–1461.

    Article  CAS  PubMed  Google Scholar 

  27. Fortin, C.F., O. Lesur, and T. Fulop Jr. 2007. Effects of aging on triggering receptor expressed on myeloid cells (TREM)-1-induced PMN functions. FEBS Letters 581: 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  28. Gibot, S., F. Massin, M. Marcou, V. Taylor, R. Stidwill, P. Wilson, et al. 2007. TREM-1 promotes survival during septic shock in mice. European Journal of Immunology 37: 456–466.

    Article  CAS  PubMed  Google Scholar 

  29. Ornatowska, M., A.C. Azim, X. Wang, J.W. Christman, L. Xiao, M. Joo, et al. 2007. Functional genomics of silencing TREM-1 on TLR4 signaling in macrophages. American Journal of Physiology. Lung Cellular and Molecular Physiology 293: L1377–L1384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zeng, H., M. Ornatowska, M.S. Joo, and R.T. Sadikot. 2007. TREM-1 expression in macrophages is regulated at transcriptional level by NF-kappaB and PU.1. European Journal of Immunology 37: 2300–2308.

    Article  CAS  PubMed  Google Scholar 

  31. Sanders, R.D., A. Godlee, T. Fujimori, J. Goulding, G. Xin, S. Salek-Ardakani, et al. 2013. Benzodiazepine augmented gamma-amino-butyric acid signaling increases mortality from pneumonia in mice. Critical Care Medicine 41: 1627–1636.

    Article  CAS  PubMed  Google Scholar 

  32. Tian, J., C. Chau, T.G. Hales, and D.L. Kaufman. 1999. GABA(A) receptors mediate inhibition of T cell responses. Journal of Neuroimmunology 96: 21–28.

    Article  CAS  PubMed  Google Scholar 

  33. Bhat, R., R. Axtell, A. Mitra, M. Miranda, C. Lock, R.W. Tsien, et al. 2010. Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences of the United States of America 107: 2580–2585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (no. 81171791).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Yu Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, Y., Xiong, JY. et al. Etomidate Mitigates Lipopolysaccharide-Induced CD14 and TREM-1 Expression, NF-κB Activation, and Pro-inflammatory Cytokine Production in Rat Macrophages. Inflammation 39, 327–335 (2016). https://doi.org/10.1007/s10753-015-0253-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0253-7

KEY WORDS

Navigation