, Volume 37, Issue 5, pp 1689–1704 | Cite as

Modulation of Tissue Inflammatory Response by Histamine Receptors in Scorpion Envenomation Pathogenesis: Involvement of H4 Receptor

  • Amal Lamraoui
  • Sonia Adi-Bessalem
  • Fatima Laraba-Djebari


The inflammatory response caused by scorpion venoms is a key event in the pathogenesis of scorpion envenomation. This response was assessed in the cardiac, pulmonary, and gastric tissues of envenomed mice. The results reveal an increase of permeability in cardiac, pulmonary, and gastric vessels accompanied by an edema-forming, inflammatory cell infiltration, and imbalanced redox status. These effects are correlated with severe tissue alterations and concomitant increase of metabolic enzymes in sera. Pretreatment of mice with antagonists of H1, H2, or H4 receptors markedly alleviated these alterations in the heart and lungs. Nevertheless, the blockade of the H3 receptor slightly reduced these disorders. Histamine H2 and H4 receptors were the most pharmacological targets involved in the gastric oxidative inflammation. These findings could help to better understand the role of histamine in scorpion venom-induced inflammatory response and propose new therapy using as targets the H4 receptor in addition to histamine H1 and H2 receptors to attenuate the induced inflammatory disorders encountered in scorpion envenoming.


scorpion venom inflammation response oxidative stress tissue injury histamine receptors 


  1. 1.
    Ismail, M. 1995. Review article: the scorpion envenoming syndrome. Toxicon 33: 825–858.PubMedCrossRefGoogle Scholar
  2. 2.
    Hammoudi-Triki, D., E. Ferquiel, A. Robbe-Vincent, C. Bon, V. Choumet, and F. Laraba-Djebari. 2004. Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Royal Society of Tropical Medicine and Hygiene 98: 240–250.CrossRefGoogle Scholar
  3. 3.
    Delori, P., J.F. Van-Rietschoten, and H. Rochat. 1981. Scorpion venom and neurotoxins: an immunological study. Toxicon 19(3): 393–407.PubMedCrossRefGoogle Scholar
  4. 4.
    Possani, L.D., B. Becerril, M. Delepierre, and J. Tytgat. 1999. Scorpion toxins specific for Na+-channels. European Journal of Biochemistry 264: 287–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Sofer, S., and M. Gueron. 1988. Respiratory failure in children following envenomation by the scorpion Leiurus quinquestriatus: hemodynamics and neurological aspects. Toxicon 26: 931–939.PubMedCrossRefGoogle Scholar
  6. 6.
    De-Matos, I.M., O.A. Rocha, R. Leite, and L. Freire-Maia. 1997. Lung edema induced by Tityus serrulatus scorpion venom in the rat. Comparative Biochemistry and Physiology 118C: 143–148.Google Scholar
  7. 7.
    Adi-Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2008. Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Experimental and Toxicologic Pathology 60(4–5): 373–380.PubMedCrossRefGoogle Scholar
  8. 8.
    Sami-Merah, S., D. Hammoudi-Triki, M.F. Martin-Eauclaire, and F. Laraba-Djebari. 2008. Combination of two antibody fragments F(ab’)2/Fab: an alternative for scorpion envenoming treatment. International Immunopharmacology 8: 1386–1394.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Suze, G., S. Moncada, C. González, C. Sevcik, V. Aguilar, and A. Alagón. 2003. Relationship between plasmatic levels of various cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon 41(3): 367–375.PubMedCrossRefGoogle Scholar
  10. 10.
    Fukuhara, Y.D., M.L. Reis, R. Dellalibera-Joviliano, F.Q. Cunha, and E.A. Donadi. 2003. Increased plasma levels of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon 41(1): 49–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Raouraoua-Boukhari, R., S. Sami-Merah, D. Hammoudi-Triki, and F. Laraba-Djebari. 2012. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation 19(2): 103–110.CrossRefGoogle Scholar
  12. 12.
    Saidi, H., S. Adi-Bessalem, D. Hammoudi-Triki, and F. Laraba-Djebari. 2013. Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two buthidae venoms. Journal of Venomous Animals and Toxins including Tropical Diseases 19(8): 1–7.Google Scholar
  13. 13.
    Meki, A.R., and Z.M. Mohey El-Dean. 1998. Serum interleukin-1beta, interleukin-6, nitric oxide and alpha1-antitrypsin in scorpion envenomed children. Toxicon 36(12): 1851–1859.PubMedCrossRefGoogle Scholar
  14. 14.
    Petricevich, V.L., and C.F. Penã. 2002. The dynamics of cytokine d nitric oxide secretion in mice injected with Tityus serrulatus scorpion venom. Mediators of Inflammation 11: 173–180.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dousset, E., L. Carrega, J.G. Steinberg, O. Clot-Faybesse, B. Jouirou, N. Sauze, C. Devaux, Y. Autier, Y. Jammes, M.F. Martin-Eauclaire, and R. Guieu. 2005. Evidence that free radical generation occurs during scorpion envenomation. Comparative Biochemistry and Physiology, Part C 140: 221–226.Google Scholar
  16. 16.
    Nascimento Jr., E.B., K.A. Costa, C.M. Bertollo, A.C. Oliveira, L.T. Rocha, A.L. Souza, M.B. Glória, T. Moraes-Santos, and M.M. Coelho. 2005. Pharmacological investigation of the nociceptive response and edema induced by venom of the scorpion Tityus serrulatus. Toxicon 45(5): 585–593.PubMedCrossRefGoogle Scholar
  17. 17.
    Pessini, A.C., A. Kanashiro, D.C. Malvar, R.R. Machado, D.M. Soares, M.J. Figueiredo, E. Kalapothakis, and G.E.P. Souza. 2008. Inflammatory mediators involved in the nociceptive and oedematogenic responses induced by Tityus serrulatus scorpion venom injected into rat paws. Toxicon 52: 729–736.PubMedCrossRefGoogle Scholar
  18. 18.
    De-Matos, I.M., A. Talvani, O.O.A. Rocha, L. Freire-Maia, and M.M. Teixeira. 2001. Evidence for a role of mast cells in the lung edema induced by Tityus serrulatus venom in rats. Toxicon 39: 863–867.PubMedCrossRefGoogle Scholar
  19. 19.
    Adi-Bessalem, S., Sami-Merah, S., Mendil, A., Hamoudi-Triki, D., Laraba-Djebari, F. 2010. Pharmacological assessment of inflammatory mediators after Androctonus australis hector envenomation: involvement of histamine H1 receptor. Meeting on Toxinology. 1-2.Google Scholar
  20. 20.
    Zuliani, J.P., T.A. Freitas, I.M. Conceicão, and F.H. Kwasniewski. 2013. Tityus serrulatus venom increases vascular permeability in selected airway tissues in a mast cell-independent way. Experimental and Toxicologic Pathology 65: 229–234.PubMedCrossRefGoogle Scholar
  21. 21.
    Buckley, I.K., and G.B. Ryan. 1969. Increased vascular permeability. The effect of histamine and serotonin on rat mesenteric blood vessels in vivo. American Journal of Pathology 55(3): 329–347.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ohuchi, Y., H. Ohtsu, E. Sakurai, K. Yanai, A. Ichikawa, Z. Radvany, et al. 1998. Induction of histidine decarboxylase in type2 T helper lymphocytes treated with anti-CD3 antibody. Inflammation Research 47(1): 48–49.CrossRefGoogle Scholar
  23. 23.
    Szeberenyi, J.B., E. Pallinger, M. Zsinko, Z. Pos, G. Rothe, E. Orso, et al. 2001. Inhibition of effects of endogenously synthesized histamine disturbs in vitro human dendritic cell differentiation. Immunology Letters 76: 175–182.PubMedCrossRefGoogle Scholar
  24. 24.
    Hill, S.J., C.R. Ganellin, H. Timmermann, J.C. Schwartz, N.P. Shnakley, J.M. Young, W. Schunack, R. Levi, and H.L. Haas. 1997. International union of pharmacology XIII. Classification of histamine receptors. Pharmacological Reviews 49: 253–278.PubMedGoogle Scholar
  25. 25.
    Parsons, M.E., and C.R. Ganellin. 2006. Histamine and its receptors. British Journal of Pharmacology 147(S1): 127–135.CrossRefGoogle Scholar
  26. 26.
    Liu, T., Z.T. Bai, X.Y. Pang, Z.F. Chai, F. Jiang, and Y.H. Ji. 2007. Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion Buthus martensi Karch venom. European Journal of Pharmacology 575: 46–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Dutta, A., and S.B. Deshpande. 2011. Indian red scorpion venom-induced augmentation of cardio-respiratory reflexes and pulmonary edema involve the release of histamine. Toxicon 57: 193–198.PubMedCrossRefGoogle Scholar
  28. 28.
    De Matos, I.M., D.G. Souza, D.G. Seabra, L. Freire-Maia, and M.M. Teixeira. 1999. Effects of tachykinin NK1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. European Journal of Pharmacology 376: 293–300.PubMedCrossRefGoogle Scholar
  29. 29.
    Sun, J., X. Zhang, M. Broderich, and H. Fein. 2003. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3: 276–284.CrossRefGoogle Scholar
  30. 30.
    Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.PubMedCrossRefGoogle Scholar
  31. 31.
    Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126.PubMedCrossRefGoogle Scholar
  32. 32.
    Mac Glashan Jr., D. 2003. Histamine: a mediator of inflammation. Journal of Allergy and Clinical Immunology 112(4): 53–59.CrossRefGoogle Scholar
  33. 33.
    Sami-Merah, S., Hammoudi-Triki, D., Adi-Bessalem, S., Mendil A., Martin-Eauclaire MF., Laraba-Djebari F. 2009. L’augmentation de la permeabilité vasculaire serait-elle un facteur déclenchant de l’oedeme pulmonaire induit par le venin du scorpion Androctonus australis hector ?: Toxine et Signalisation-Rencontre en Toxinologie Editions de la SFET. 161-163.Google Scholar
  34. 34.
    Oliveira, F.N., M.R. Mortari, F.P. Carneiro, J.A. Guerrero-Vargas, D.M. Santos, A.M.C. Pimenta, and E.F. Schwartz. 2013. Another record of significant regional variation in toxicity of Tityus serrulatus venom in Brazil: a step towards understanding the possible role of sodium channel modulators. Toxicon 73: 33–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen, B., C. Wang, and Y. Ji. 2002. Asian scorpion BmK venom induces plasma extravasation and thermal hyperalgesia in the rat. Toxicon 40: 527–533.PubMedCrossRefGoogle Scholar
  36. 36.
    Pincus, S.H., A.M. Di Napoli, and W.R. Schooley. 1982. Superoxide production by eosinophils: activation by histamine. Journal of Investigative Dermatology 79: 53–57.PubMedCrossRefGoogle Scholar
  37. 37.
    Elsner, J., S. Dichmann, and A. Kapp. 1995. Activation of the respiratory burst in human eosinophils by chemotaxins requires intracellular calcium fluxes. Journal of Investigative Dermatology 105: 231–236.PubMedCrossRefGoogle Scholar
  38. 38.
    Defraigne, J.O., J. Pincemail, R. Larbuisson, F. Blaffart, and R. Limet. 2000. Cytokine release and neutrophil activation are not prevented by heparin-coated circuits and aprotinin administration. Annals of Thoracic Surgery 69: 1084–1091.PubMedCrossRefGoogle Scholar
  39. 39.
    Kimura, H., T. Sawada, S. Oshima, K. Kozawa, T. Ishioka, and M. Kato. 2005. Toxicity and roles of reactive oxygen species. Current Drug Targets. Inflammation and Allergy 4: 489–495.PubMedCrossRefGoogle Scholar
  40. 40.
    Lardinois, O.M., M.M. Mestdagh, and P.G. Rouxhet. 1996. Reversible inhibition and irreversible inactivation of catalase in presence of hydrogen peroxide. Biochimica et Biophysica Acta 1295(2): 222–238.PubMedCrossRefGoogle Scholar
  41. 41.
    Folkerts, G., J. Kloek, R.B. Muijsers, and F.P. Nijkamp. 2001. Reactive nitrogen and oxygen species in airway inflammation. European Journal of Pharmacology 429: 251–262.PubMedCrossRefGoogle Scholar
  42. 42.
    Adi-Bessalem, S., A. Ladjal-Mendil, D. Hammoudi-Triki, and F. Laraba-Djebari. 2012. Immuno-inflammatory response after scorpion envenomation: potential role of eïcosanoids and histamine H1-receptor. Toxicon 60: 95–248.CrossRefGoogle Scholar
  43. 43.
    Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2003. Effet de l’immunothérapie sur les modifications métaboliques et histopathologiques après envenimation scorpionique expérimentale. Bulletin de la Societe de Pathologie Exotique 96: 297–302.Google Scholar
  44. 44.
    Boussag-Abib, L., and F. Laraba-Djebari. 2011. Enhanced immune sera and vaccine: safe approach to treat scorpion envenoming. Vaccine 29: 8951–8959.CrossRefGoogle Scholar
  45. 45.
    Corréa, M.M., S.V. Sampaio, R.A. Lopes, L.C. Mancuso, O.A.B. Cunha, J.J. Franco, et al. 1997. Biochemical and histopathological alterations induced in rats by Tityus serrulatus scorpion venom and its major neurotoxin Tityustoxin-1. Toxicon 35: 1053–1067.PubMedCrossRefGoogle Scholar
  46. 46.
    D’Suze, G., V. Salazar, P. Diaz, C. Sevcik, H. Azpurua, and N. Bracho. 2004. Histopathological changes and inflammatory response induced by Tityus discrepans scorpion venom in rams. Toxicon 44: 851–860.PubMedCrossRefGoogle Scholar
  47. 47.
    Heidarpour, M., E. Ennaifer, H. Ahari, N. Srairi-Abid, L. Borchani, G. Khalili, H. Amini, A.A. Anvar, S. Boubaker, M. El-Ayeb, and D. Shahbazzadeh. 2012. Histopathological changes induced by Hemiscorpius lepturus scorpion venom in mice. Toxicon 59: 373–378.PubMedCrossRefGoogle Scholar
  48. 48.
    Daisley, H., D. Alexander, and P. Pitt-Miller. 1999. Acute myocarditis following Tityus trinitatis envenoming: morphological and pathophysiological characteristics. Toxicon 37: 159–165.PubMedCrossRefGoogle Scholar
  49. 49.
    Bakker, R.A., S.B. Schoonus, M.J. Smit, H. Timmerman, and R. Leurs. 2001. Histamine H1-receptor activation of nuclear factor-k B: roles for Gbg- and Gaq/11-subunits in constitutive and agonist-mediated signaling. Molecular Pharmacology 60: 1133–1142.PubMedGoogle Scholar
  50. 50.
    Collins, P.D., S. Marleau, D.A. Griffiths-Johnson, P.J. Jose, and T.J. Willliams. 1995. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. Journal of Experimental Medicine 182: 1169–1174.PubMedCrossRefGoogle Scholar
  51. 51.
    Shah, P.K., M. Lakhotia, M. Chittora, S. Mehta, and A. Purohit. 1989. Pulmonary infiltration with blood eosinophilia after scorpion sting. Chest 95: 691–692.PubMedCrossRefGoogle Scholar
  52. 52.
    Voronov, E., R.N. Apte, and S. Sofer. 1999. The systemic inflammatory response syndrome related to the release of cytokines following severe envenomation. Journal of Venomous Animals and Toxins 5(1): 19–23.CrossRefGoogle Scholar
  53. 53.
    Borges, A., H.J.M. Op den Camp, and J.B. De Sanctis. 2011. Specific activation of human neutrophils by scorpion venom: a flow cytometry assessment. Toxicology in Vitro 25(1): 358–367.PubMedCrossRefGoogle Scholar
  54. 54.
    Adi-Bessalem, S., A. Mendil, D. Hammoudi-Triki, and F. Laraba-Djebari. 2012. Lung immunoreactivity and airway inflammation: their assessment after scorpion envenomation. Inflammation 35(2): 501–508.PubMedCrossRefGoogle Scholar
  55. 55.
    Kone, B.C., J. Schwöbel, P. Turner, M.G. Mohaupt, and C.B. Cangro. 1995. Role of NF-kappa B in the regulation of inducible nitric oxide synthase in an MTAL cell line. American Journal of Physiology 269(5 Pt 2): 718–729.Google Scholar
  56. 56.
    Benbarek, H., A. Mouithys Mickalad, G. Deby-Dupont, C. Deby, S. Grulke, A. Nemmar, M. Lamy, and D. Serteyn. 1999. High concentrations of histamine stimulate aquine polymorphonuclear neutrophis to produce reactive oxygen species. Inflammation Research 48(11): 594–601.PubMedCrossRefGoogle Scholar
  57. 57.
    Black, J.W., D.A. Owen, and M.E. Parsons. 1975. An analysis of the depressor responses to histamine in the cat and dog: involvement of both H1- and H2-receptors. British Journal of Pharmacology 54: 319–324.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Tamaoki, J., J. Nakata, K. Takeyama, A. Chiotani, and K. Konno. 1997. Histamine H2 receptor mediated airway goblet cell secretion and its modulation by histamine-degrading enzymes. Journal of Allergy and Clinical Immunology 99: 233–238.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoshioka, T., W.W. Monafo, V.H. Ayvazian, F. Detz, and D. Flynn. 1978. Cimetidine inhibits burn edema formation. The American Journal of Surgery 136: 681–685.CrossRefGoogle Scholar
  60. 60.
    Idzko, M., A. La Sala, D. Ferrari, E. Panther, Y. Herouy, S. Dichmann, et al. 2002. Expression and function of histamine receptors in human monocyte-derived dendritic cells. Journal of Allergy and Clinical Immunology 109: 839–846.PubMedCrossRefGoogle Scholar
  61. 61.
    Fontaine, C., and P. Demoly. 2006. Histamine and dendritic cells. Revue Française d'Allergologie et d'Immunologie Clinique 46: 480–483.CrossRefGoogle Scholar
  62. 62.
    Yamaguchi, M., C.S. Lantz, H.C. Oettgen, et al. 1997. IgE enhances mouse mast cell Fc (Epsilon) RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. Journal of Experimental Medicine 185: 663–672.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gambero, A., E.C.T. Landucci, M.H. Toyama, S. Marangoni, J.R. Giglio, H.B. Nader, C.P. Dietrich, G. De Nucci, and E. Antunes. 2002. Human neutrophil migration induced by secretory phospholipases A2: a role for cell surface glycosaminoglycans. Biochemical Pharmacology 63(1): 65–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidt, J., S. Fleissner, I. Heimann-Weitschat, R. Lindstaedt, and I. Szelenyi. 1994. Histamine increases anti-CD3 induced IL-5 production of TH2-type T cells via histamine H2-receptors. PubMed 42(3–4): 81–85.Google Scholar
  65. 65.
    Krouwels, F.H., B.E.A. Hol, R. Lutter, et al. 1998. Histamine affects interleukin-4, interleukin-5, and interferon-gamma production by human T cell clones from the airways and blood. American Journal of Respiratory Cell and Molecular Biology 18: 721–730.PubMedCrossRefGoogle Scholar
  66. 66.
    Ermolov, A.S, Pakhomova, G.V, Taeritneva, L.F, Matveev, S.B, Marchenko, V.V., Golikov, P.P. 1995. Effect of the histamine H2-receptor antagonist Zantac on lipid peroxidation an antioxidant system in patients with gastroduodenal hemorrhage of ulcer etiology. Patol Fiziol Eksp Ter. (1) : 23-25.Google Scholar
  67. 67.
    Cannon, K.E., R. Leurs, and L.B. Hough. 2007. Activation of peripheral and spinal histamine H3 receptors inhibits formalin-induced inflammation and nociception, respectively. Pharmacology, Biochemistry, and Behavior 88: 122–129.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Raible, D.G., T. Lenahan, Y. Fayvilevich, et al. 1994. Pharmacologic characterization of a novel histamine receptor on human eosinophils. American Journal of Respiratory and Critical Care Medicine 149(6): 1506–1511.PubMedCrossRefGoogle Scholar
  69. 69.
    Hofstra, C.L., P.J. Desai, R.L. Thurmond, and W.P. Fung-Leung. 2003. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. The Journal of Pharmacology and Experimental Therapeutics 305: 1212–1221.PubMedCrossRefGoogle Scholar
  70. 70.
    Gonzalez-Espinosa, C. 2010. Fyn kinase controls Fc_RI receptor-operated calcium entry necessary for full degranulation in mast cells. Biochemical and Biophysical Research Communications 391: 1714–1720.PubMedCrossRefGoogle Scholar
  71. 71.
    Bäumer, W., S. Wendorff, R. Gutzmer, T. Werfel, D. Dijkstra, P. Chazot, H. Stark, and M. Kietzmann. 2008. Histamine H4 receptors modulate dendritic cell midration through skin-immunomodulatory role of histamine. Allergy 63(10): 1387–1394. ISSN 1398-9995.PubMedCrossRefGoogle Scholar
  72. 72.
    Shiraishi, Y., Takeda, K., Jia, Y., Domenico, J., Thurmond, R. L., Karasuyama, H., Gelfand, E.W. 2011.Basophils contribute to allergic rhinitis through engagement of the histamine H4 receptor C34. Neutrophils, mast cells, basophils and eosinophils in lung disease. pp. A4364 Google Scholar
  73. 73.
    Ling, P., K. Ngo, S. Nguyen, R.L. Thurmond, J.P. Edwards, L. Karlsson, and W.P. Fung-Leung. 2004. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. British Journal of Pharmacology 142: 161–171.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Strakhova, M.I., C.A. Cuff, A.M. Manelli, et al. 2009. In vitro and in vivo characterization of A-940894: a potent histamine H4 receptor antagonist with anti-inflammatory properties. British Journal of Pharmacology 157: 44–54.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amal Lamraoui
    • 1
  • Sonia Adi-Bessalem
    • 1
  • Fatima Laraba-Djebari
    • 1
  1. 1.Faculty of Biological Sciences, Laboratory Cellular and Molecular Biology, Department Cellular and Molecular BiologyUSTHBAlgiersAlgeria

Personalised recommendations