, Volume 37, Issue 5, pp 1432–1438 | Cite as

The Link Between Unpredictable Chronic Mild Stress Model for Depression and Vascular Inflammation?

  • Tuğçe Demirtaş
  • Tijen Utkan
  • Ayşe Karson
  • Yusufhan Yazır
  • Dilek Bayramgürler
  • Nejat Gacar


Inflammation has been suggested to be associated with stress-induced depression and cardiovascular dysfunction. Tumor necrosis factor alpha (TNF-α) is a major cytokine in the activation of neuroendocrine, immune, and behavioral responses. In this study, we investigated the effects of infliximab (a TNF-α inhibitor) on endothelium-dependent vascular reactivity, systemic blood pressure, and endothelial nitric oxide synthase (eNOS) immunoreactivity in the unpredictable chronic mild stress (UCMS) model of depression in rats. There was no significant change between all groups in the systemic blood pressure. In UCMS, endothelium-dependent relaxation of the smooth muscle in response to carbachol was significantly decreased with 50 % maximal response (E max) and pD2 values compared with the controls. Infliximab was able to reverse this UCMS effect. Relaxation in response to the nitric oxide (NO) donor sodium nitroprusside and papaverine and KCl-induced contractile responses was similar between groups. In UCMS, decreased expression of eNOS was detected. Moreover, there was no significant change in UCMS + infliximab group with respect to control rats. Our results suggest that tumor necrosis factor-alpha (TNF-α) could be a major mediator of vascular dysfunction associated with UCMS, leading to decreased expression of eNOS.


infliximab TNF-α inflammation chronic stress vascular reactivity nitric oxide (NO) 



This study was supported by a Grant from the Kocaeli University Research Fund and chosen for oral presentation at 22nd National Congress of Pharmacology on 4–7 November 2013 in Antalya, Turkey.


  1. 1.
    Black, P.H., and L.D. Garbutt. 2002. Stress, inflammation and cardiovascular disease. Journal of Psychosomatic Research 52: 1–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Strike, P.C., and A. Steptoe. 2004. Psychosocial factors in the development of coronary artery disease. Progress in Cardiovascular Diseases 46: 337–347.PubMedCrossRefGoogle Scholar
  3. 3.
    Naldi, L., and S.R. Mercuri. 2010. Epidemiology of comorbidities in psoriasis. Dermatologic Therapy 23: 114–118. Review.PubMedCrossRefGoogle Scholar
  4. 4.
    Michaud, K., and F. Wolfe. 2007. Comorbidities in rheumatoid arthritis. Best Practice & Research. Clinical Rheumatology 21: 885–906. Review.CrossRefGoogle Scholar
  5. 5.
    Mosovich, S.A., R.T. Boone, A. Reichenberg, S. Bansilal, J. Shaffer, K. Dahlman, P.D. Harvey, and M.E. Farkouh. 2008. New insights into the link between cardiovascular disease and depression. International Journal of Clinical Practice 62: 423–432. Review.PubMedCrossRefGoogle Scholar
  6. 6.
    Lett, H.S., J. Davidson, and J.A. Blumenthal. 2005. Nonpharmacologic treatments for depression in patients with coronary heart disease. Psychosomatic Medicine 67(Suppl 1): S58–S62.PubMedCrossRefGoogle Scholar
  7. 7.
    Plante, G.E. 2005. Depression and cardiovascular disease: a reciprocal relationship. Metabolism, Clinical and Experimental 54: 45–48. Review.CrossRefGoogle Scholar
  8. 8.
    Howren, M.B., D.M. Lamkin, and J. Suls. 2009. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine 71: 171–186.PubMedCrossRefGoogle Scholar
  9. 9.
    Dowlati, Y., N. Herrmann, W. Swardfager, H. Liu, L. Sham, E.K. Reim, and K.L. Lanctôt. 2010. A meta-analysis of cytokines in major depression. Biological Psychiatry 67: 446–457.PubMedCrossRefGoogle Scholar
  10. 10.
    Pollak, Y., and R. Yirmiya. 2002. Cytokine-induced changes in mood and behaviour: implications for ‘depression due to a general medical condition’, immunotherapy and antidepressive treatment. International Journal of Neuropsychopharmacology 5: 389–399.PubMedCrossRefGoogle Scholar
  11. 11.
    Capuron, L., and A.H. Miller. 2004. Cytokines and psychopathology: lessons from interferon-alpha. Biological Psychiatry 56: 819–824.PubMedCrossRefGoogle Scholar
  12. 12.
    Willner, P., R. Muscat, and M. Papp. 1992. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neuroscience and Biobehavioral Reviews 16: 525–534. Review.PubMedCrossRefGoogle Scholar
  13. 13.
    Willner, P. 1997. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134: 319–329.PubMedCrossRefGoogle Scholar
  14. 14.
    Willner, P. 2005. Chronic mild stress (CMS) revisited: consistency and behavioural neurobiological concordance in the effects of CMS. Neuropsychobiology 52: 90–110. Review.PubMedCrossRefGoogle Scholar
  15. 15.
    Karson, A., T. Demirtas, D. Bayramgürler, F. Balcı, and T. Utkan. 2013. Chronic administration of infliximab (TNF-alpha inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic & Clinical Pharmacology & Toxicology 112(5): 335–340.CrossRefGoogle Scholar
  16. 16.
    Yazir, Y., T. Utkan, and F. Aricioglu. 2012. Inhibition of neuronal nitric oxide synthase and soluble guanylate cyclase prevents depression-like behaviour in rats exposed to chronic unpredictable mild stress. Basic & Clinical Pharmacology & Toxicology 111(3): 154–160.Google Scholar
  17. 17.
    Bayramgurler, D., A. Karson, Y. Yazir, I.K. Celikyurt, S. Kurnaz, and T. Utkan. 2013. The effect of etanercept on aortic nitric oxide-dependent vasorelaxation in an unpredictable chronic mild stress model of depression in rats. European Journal of Pharmacology 710(1–3): 67–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Behrendt, D., and P. Ganz. 2002. Endothelial function. From vascular biology to clinical applications. The American Journal of Cardiology 90: 40–48.CrossRefGoogle Scholar
  19. 19.
    Broadly, A.J., A. Korszun, C.J. Jones, and M.P. Frenneaux. 2002. Arterial endothelial function is impaired in treated depression. Heart 88(5): 521–523.CrossRefGoogle Scholar
  20. 20.
    Rybakowski, J.K., A. Wykretowicz, A. Heymann-Szlachcinska, and H. Wysocki. 2006. Impairment of endothelial function in unipolar and bipolar depression. Biological Psychiatry 60(8): 889–891.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Mellédo, J.M., N. Mahil, and G.B. Baker. 2004. Nitric oxide: a key player in the relation between cardiovascular disease and major depressive disorder? Journal of Psychiatry & Neuroscience 29: 414–416.Google Scholar
  22. 22.
    Chrapko, W.E., P. Jurasz, M.W. Radomski, N. Lara, S.L. Archer, and J.M. Le Mellédo. 2004. Decreased platelet nitric oxide synthase activity and plasma nitric oxide metabolites in major depressive disorder. Biological Psychiatry 15: 129–134.CrossRefGoogle Scholar
  23. 23.
    d’Audiffret, A.C., S.J. Frisbee, P.A. Stapleton, A.G. Goodwill, E. Isingrini, and J.C. Frisbee. 2010. Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease? Journal of Applied Physiology 108: 1041–1051.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Isingrini, E., A. Surget, C. Belzung, J.L. Freslon, J. Frisbee, J. O’Donnell, V. Camus, and A. d’Audiffret. 2011. Altered aortic vascular reactivity in the unpredictable chronic mild stress model of depression in mice: UCMS causes relaxation impairment to ACh. Physiology & Behavior 103: 540–546.CrossRefGoogle Scholar
  25. 25.
    Isingrini, E., C. Belzung, J.L. Freslon, M.C. Machet, and V. Camus. 2012. Fluoxetine effect on aortic nitric oxide-dependent vasorelaxation in the unpredictable chronic mild stress model of depression in mice. Psychosomatic Medicine 74: 63–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Nieuwdorp, M., M.C. Meuwese, H.L. Mooij, M.H. van Lieshout, A. Hayden, M. Levi, J.C. Meijers, C. Ince, J.J. Kastelein, H. Vink, and E.S. Stroes. 2009. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 202(1): 296–303.PubMedCrossRefGoogle Scholar
  27. 27.
    Arenas, I.A., Y. Xu, P. Lopez-Jaramillo, and S.T. Davidge. 2004. Angiotensin II-induced MMP-2 release from endothelial cells is mediated by TNF-alpha. American Journal of Physiology. Cell Physiology 286: 779–784.CrossRefGoogle Scholar
  28. 28.
    Yoshizumi, M., M.A. Perrella, J.C. Burnett, and M.E. Lee Jr. 1993. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circulation Research 73: 205–209.PubMedCrossRefGoogle Scholar
  29. 29.
    Lu, X.T., Y.F. Liu, L. Zhang, R.X. Yang, X.Q. Liu, F.F. Yan, Y.B. Wang, W.W. Bai, Y.X. Zhao, and F. Jiang. 2012. Unpredictable chronic mild stress promotes atherosclerosis in high cholesterol-fed rabbits. Psychosomatic Medicine 74: 604–611.PubMedCrossRefGoogle Scholar
  30. 30.
    Furchgott, R.F., and J.V. Zawadzki. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789): 373–376.PubMedCrossRefGoogle Scholar
  31. 31.
    Ignarro, L.J., K.S. Wood, and M.S. Wolin. 1982. Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proceedings of the National Academy of Sciences of the United States of America 79: 2870–2873.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Grippo, A.J., J. Francis, T.G. Beltz, R.B. Felder, and A.K. Johnson. 2005. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiology & Behavior 84: 697–706.CrossRefGoogle Scholar
  33. 33.
    Csiszar, A., N. Labinskyy, K. Smith, A. Rivera, Z. Orosz, and Z. Ungvari. 2007. Vasculoprotective effects of anti-tumor necrosis factor-α treatment in aging. The American Journal of Pathology 170: 388–398.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hürlimann, D., A. Forster, G. Noll, F. Enseleit, R. Chenevard, O. Distler, M. Béchir, L.E. Spieker, M. Neidhart, B.A. Michel, R.E. Gay, T.F. Lüscher, S. Gay, and F. Ruschitzka. 2002. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis. Circulation 106: 2184–2187.PubMedCrossRefGoogle Scholar
  35. 35.
    Fichtlscherer, S., L. Rössig, S. Breuer, M. Vasa, S. Dimmeler, and A.M. Zeiher. 2001. Tumor necrosis factor antagonism with etanercept improves systemic endothelial vasoreactivity in patients with advanced heart failure. Circulation 18: 3023–3025.CrossRefGoogle Scholar
  36. 36.
    Yoshizumi, M., M.A. Perrella, J.C. Burnett, and M.E. Lee Jr. 1993. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circulation Research 73: 205–209.PubMedCrossRefGoogle Scholar
  37. 37.
    Murphy, H.S., J.A. Shayman, G.O. Till, M. Mahrougui, C.B. Owens, U.S. Ryan, and P.A. Ward. 1992. Superoxide responses of endothelial cells to C5a and TNF-α: divergent signal transduction pathways. The American Journal of Physiology 263: 51–59.Google Scholar
  38. 38.
    Tran, L.T., K.M. MacLeod, and J.H. McNeill. 2009. Chronic etanercept treatment prevents the development of hypertension in fructose-fed rats. Molecular and Cellular Biochemistry 330: 219–228.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tuğçe Demirtaş
    • 1
  • Tijen Utkan
    • 1
  • Ayşe Karson
    • 2
  • Yusufhan Yazır
    • 3
  • Dilek Bayramgürler
    • 4
  • Nejat Gacar
    • 1
  1. 1.Department of Pharmacology, Medical FacultyKocaeli University, Medical FacultyKocaeliTurkey
  2. 2.Department of Physiology, Medical FacultyKocaeli UniversityKocaeliTurkey
  3. 3.Department of Histology, Medical FacultyKocaeli UniversityKocaeliTurkey
  4. 4.Department of Dermatology, Medical FacultyKocaeli UniversityKocaeliTurkey

Personalised recommendations