, Volume 37, Issue 4, pp 1261–1270 | Cite as

Toxoplasma gondii Infection of Decidual CD1c+ Dendritic Cells Enhances Cytotoxicity of Decidual Natural Killer Cells

  • Xianbing Liu
  • Mingdong Zhao
  • Xin Yang
  • Meiyu Han
  • Xiaoyan Xu
  • Yuzhu Jiang
  • Xuemei Hu


There is crosstalk between decidual natural killer (dNK) cells and decidual dendritic cells (dDCs) that promotes tolerance of trophoblast cells carrying paternally derived antigens. In the present study, we report that infection of CD1c+ dDCs with Toxoplasma gondii enhanced gamma interferon (IFN-γ) production by dNK cells in co-culture. The enhancement of IFN-γ production was induced by cytokine IL-12 which increased obviously in co-culture of dDCs with dNK cells following T. gondii infection, and this enhancement largely abrogated when cells were cultured in the presence of an anti-IL-12 antibody. The expression of KIR2DL4 and NKG2D on dNK cells was increased after T. gondii infection, and higher expression of NKG2D was induced by co-cultured dDCs. Neutralization of IL-12 decreased NKG2D expression on dNK cells. Furthermore, dDCs with T. gondii infection increased the cytotoxicity of co-cultured dNK cells against K562 target cells, which was mediated by activating receptor of NKG2D. Thus, T. gondii infection of dDCs enhanced dNK cell IFN-γ production and NKG2D expression, and then led to increased cytotoxicity of dNK cells. The up-regulated dNK cell cytotoxicity at the maternal–fetal interface may contribute to abnormal pregnancy outcomes caused by T. gondii infection in early pregnancy.


Toxoplasma gondii dDCs dNK cells cytotoxicity mechanism of adverse pregnancy outcomes 



This study was supported by funds from the National Natural Science Foundation of China (81171591 and 81273243), the Natural Science Foundation of Shandong Province (ZR2010HM012), and the Science and Technology Development Planning Project of Shan dong Province (2012GSF11809). We thank Professor Zheng Jing for providing human tissues samples from Yantai Chinese Medicine Hospital.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Montoya, J.G., and O. Liesenfeld. 2004. Toxoplasmosis. Lancet 363: 1965–1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Robbins, J.R., V.B. Zeldovich, A. Poukchanski, J.C. Boothroyd, and A.I. Bakardjiev. 2012. Tissue barriers of the human placenta to infection with Toxoplasma gondii. Infection and Immunity 80: 418–428.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Senegas, A., O. Villard, A. Neuville, L. Marcellin, A.W. Pfaff, T. Steinmetz, M. Mousli, J.P. Klein, and E. Candolfi. 2009. Toxoplasma gondii-induced foetal resorption in mice involves interferon-gamma-induced apoptosis and spiral artery dilation at the maternofoetal interface. International Journal for Parasitology 39: 481–487.PubMedCrossRefGoogle Scholar
  4. 4.
    Xu, X., M. Zhao, X. Liu, Y. Jiang, H. Zhang, X. Zhai, L. Zhang, and X. Hu. 2013. Toxoplasma gondii infection regulates the balance of activating and inhibitory receptors on decidual natural killer cells. PLoS One 8: e55432.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, H., X. Hu, X. Liu, R. Zhang, Q. Fu, and X. Xu. 2012. The Treg/Th17 imbalance in Toxoplasma gondii-infected pregnant mice. American Journal of Reproductive Immunology 67: 112–121.PubMedCrossRefGoogle Scholar
  6. 6.
    Bulmer, J.N., P.J. Williams, and G.E. Lash. 2010. Immune cells in the placental bed. International Journal of Developmental Biology 54: 281–294.PubMedCrossRefGoogle Scholar
  7. 7.
    Manaster, I., and O. Mandelboim. 2010. The unique properties of uterine NK cells. American Journal of Reproductive Immunology 63: 434–444.PubMedCrossRefGoogle Scholar
  8. 8.
    Crncic, T.B., G. Laskarin, K.J. Frankovic, V.S. Tokmadzic, N. Strbo, I. Bedenicki, P. Le Bouteiller, J. Tabiasco, and D. Rukavina. 2007. Early pregnancy decidual lymphocytes beside perforin use Fas ligand (FasL) mediated cytotoxicity. Journal of Reproductive Immunology 73: 108–117.PubMedCrossRefGoogle Scholar
  9. 9.
    Wold, A.S., and A. Arici. 2005. Natural killer cells and reproductive failure. Current Opinion in Obstetrics & Gynecology 17: 237–241.CrossRefGoogle Scholar
  10. 10.
    Yamada, H., E.H. Kato, G. Kobashi, Y. Ebina, S. Shimada, M. Morikawa, N. Sakuragi, and S. Fujimoto. 2001. High NK cell activity in early pregnancy correlates with subsequent abortion with normal chromosomes in women with recurrent abortion. American Journal of Reproductive Immunology 46: 132–136.PubMedCrossRefGoogle Scholar
  11. 11.
    Goldszmid, R.S., A. Bafica, D. Jankovic, C.G. Feng, P. Caspar, R. Winkler-Pickett, G. Trinchieri, and A. Sher. 2007. TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-gamma production. Journal of Experimental Medicine 204: 2591–2602.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kämmerer, U., M. Schoppet, A.D. McLellan, M. Kapp, H.I. Huppertz, E. Kämpgen, and J. Dietl. 2000. Human decidua contains potent immunostimulatory CD83+ dendritic cells. American Journal of Pathology 157: 159–169.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gardner, L., and A. Moffett. 2003. Dendritic cells in the human decidua. Biology of Reproduction 69: 1438–1446.PubMedCrossRefGoogle Scholar
  14. 14.
    Kämmerer, U., A.O. Eggert, M. Kapp, A.D. McLellan, T.B. Geijtenbeek, J. Dietl, Y. van Kooyk, and E. Kämpgen. 2003. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. American Journal of Pathology 162: 887–896.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Miyazaki, S., H. Tsuda, M. Sakai, S. Hori, Y. Sasaki, T. Futatani, T. Miyawaki, and S. Saito. 2003. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. Journal of Leukocyte Biology 74: 514–522.PubMedCrossRefGoogle Scholar
  16. 16.
    Askelund, K., H.S. Liddell, A.M. Zanderigo, N.S. Fernando, T.Y. Khong, P.R. Stone, and L.W. Chamley. 2004. CD83+ dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta 25: 140–145.PubMedCrossRefGoogle Scholar
  17. 17.
    Scott, P., and C.A. Hunter. 2002. Dendritic cells and immunity to leishmaniasis and toxoplasmosis. Current Opinion in Immunology 14: 466–470.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, C.H., Y.T. Fan, A. Dias, L. Esper, R.A. Corn, A. Bafica, F.S. Machado, and J. Aliberti. 2006. Cutting edge: dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. Journal of Immunology 177: 31–35.CrossRefGoogle Scholar
  19. 19.
    Walzer, T., M. Dalod, S.H. Robbins, L. Zitvogel, and E. Vivier. 2005. Natural-killer cells and dendritic cells: “l'union fait la force”. Blood 106: 2252–2258.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerosa, F., B. Baldani-Guerra, C. Nisii, V. Marchesini, G. Carra, and G. Trinchieri. 2002. Reciprocal activating interaction between natural killer cells and dendritic cells. Journal of Experimental Medicine 195: 327–333.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Blois, S.M., G. Barrientos, M.G. Garcia, A.S. Orsal, M. Tometten, R.I. Cordo-Russo, B.F. Klapp, A. Santoni, N. Fernández, P. Terness, and P.C. Arck. 2008. Interaction between dendritic cells and natural killer cells during pregnancy in mice. Journal of Molecular Medicine 86: 837–852.PubMedCrossRefGoogle Scholar
  22. 22.
    Laskarin, G., A. Redzović, Z. Rubesa, A. Mantovani, P. Allavena, H. Haller, I. Vlastelić, and D. Rukavina. 2008. Decidual natural killer cell tuning by autologous dendritic cells. American Journal of Reproductive Immunology 59: 433–445.PubMedCrossRefGoogle Scholar
  23. 23.
    Karsten, C.M., J. Behrends, A.K. Wagner, F. Fuchs, J. Figge, I. Schmudde, L. Hellberg, and A. Kruse. 2009. DC within the pregnant mouse uterus influence growth and functional properties of uterine NK cells. European Journal of Immunology 39: 2203–2214.PubMedCrossRefGoogle Scholar
  24. 24.
    Lédée, N., S. Dubanchet, P. Oger, C. Meynant, R. Lombroso, Y. Ville, and G. Chaouat. 2007. Uterine receptivity and cytokines: new concepts and new applications. Gynecologic and Obstetric Investigation 64: 138–143.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu, X., Q. Fu, Q. Zhang, M. Zhao, Z. Gao, X. Liu, Y. Liu, and X. Hu. 2013. Changes of human decidual natural killer cells cocultured with YFP-Toxoplasma gondii: implications for abnormal pregnancy. Fertility and Sterility 99: 427–432.PubMedCrossRefGoogle Scholar
  26. 26.
    Cholujová, D., J. Jakubíková, M. Kubes, B. Arendacká, M. Sapák, R. Ihnatko, and J. Sedlák. 2008. Comparative study of four fluorescent probes for evaluation of natural killer cell cytotoxicity assays. Immunobiology 213: 629–640.PubMedCrossRefGoogle Scholar
  27. 27.
    Mahalakshmi, B., K.L. Therese, U. Devipriya, V. Pushpalatha, S. Margarita, and H.N. Madhavan. 2010. Infectious aetiology of congenital cataract based on TORCHES screening in a tertiary eye hospital in Chennai, Tamil Nadu, India. Indian Journal of Medical Research 131: 559–564.PubMedGoogle Scholar
  28. 28.
    Ashkar, A.A., and B.A. Croy. 2001. Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Seminars in Immunology 13: 235–241.PubMedCrossRefGoogle Scholar
  29. 29.
    Mailliard, R.B., Y.I. Son, R. Redlinger, P.T. Coates, A. Giermasz, P.A. Morel, W.J. Storkus, and P. Kalinski. 2003. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. Journal of Immunology 171: 2366–2373.CrossRefGoogle Scholar
  30. 30.
    Raghupathy, R., M. Makhseed, F. Azizieh, A. Omu, M. Gupta, and R. Farhat. 2000. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Human Reproduction 15: 713–718.PubMedCrossRefGoogle Scholar
  31. 31.
    Calleja-Agius, J., S. Muttukrishna, A.R. Pizzey, and E. Jauniaux. 2011. Pro- and antiinflammatory cytokines in threatened miscarriages. American Journal of Obstetrics and Gynecology 205: 83.e8–16.CrossRefGoogle Scholar
  32. 32.
    Moretta, L., R. Biassoni, C. Bottino, M.C. Mingari, and A. Moretta. 2000. Human NK-cell receptors. Immunology Today 21: 420–422.PubMedCrossRefGoogle Scholar
  33. 33.
    Hong, Y., X. Wang, P. Lu, Y. Song, and Q. Lin. 2008. Killer immunoglobulin-like receptor repertoire on uterine natural killer cell subsets in women with recurrent spontaneous abortions. European Journal of Obstetrics, Gynecology, and Reproductive Biology 140: 218–223.PubMedCrossRefGoogle Scholar
  34. 34.
    Varla-Leftherioti, M., M. Spyropoulou-Vlachou, T. Keramitsoglou, M. Papadimitropoulos, C. Tsekoura, O. Graphou, C. Papadopoulou, M. Gerondi, and C. Stavropoulos-Giokas. 2005. Lack of the appropriate natural killer cell inhibitory receptors in women with spontaneous abortion. Human Immunology 66: 65–71.PubMedCrossRefGoogle Scholar
  35. 35.
    Faridi, R.M., V. Das, G. Tripthi, S. Talwar, F. Parveen, and S. Agrawal. 2009. Influence of activating and inhibitory killer immunoglobulin-like receptors on predisposition to recurrent miscarriages. Human Reproduction 24: 1758–1764.PubMedCrossRefGoogle Scholar
  36. 36.
    Thaxton, J.E., T. Nevers, E.O. Lippe, S.M. Blois, S. Saito, and S. Sharma. 2013. NKG2D blockade inhibits poly(I:C)-triggered fetal loss in wild type but not in IL-10−/− mice. Journal of Immunology 190: 3639–3647.CrossRefGoogle Scholar
  37. 37.
    Zwirner, N.W., M.B. Fuertes, M.V. Girart, C.I. Domaica, and L.E. Rossi. 2007. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine and Growth Factor Reviews 18: 159–170.PubMedCrossRefGoogle Scholar
  38. 38.
    Castriconi, R., C. Cantoni, M. Della Chiesa, M. Vitale, E. Marcenaro, R. Conte, R. Biassoni, C. Bottino, L. Moretta, and A. Moretta. 2003. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 100: 4120–4125.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Zhang, C., J. Zhang, J. Niu, Z. Zhou, J. Zhang, and Z. Tian. 2008. Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Human Immunology 69: 490–500.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xianbing Liu
    • 1
  • Mingdong Zhao
    • 2
  • Xin Yang
    • 3
  • Meiyu Han
    • 1
  • Xiaoyan Xu
    • 1
  • Yuzhu Jiang
    • 1
  • Xuemei Hu
    • 1
  1. 1.Department of ImmunologyBinzhou Medical UniversityYantaiChina
  2. 2.Department of RadiologyAffiliated Hospital of Binzhou Medical UniversityYantaiChina
  3. 3.Clinical LaboratoryYuhuangding HospitalYantaiChina

Personalised recommendations