, Volume 37, Issue 4, pp 1240–1253 | Cite as

Modular Analysis of Bioinformatics Demonstrates a Critical Role for NF-κB in Macrophage Activation

  • Yingmei Zhang
  • Yingmei Wang
  • Ming Lu
  • Xin Qiao
  • Bei Sun
  • Weihui Zhang
  • Dongbo Xue


To achieve the goal of identifying the gene groups that regulated macrophage activation, a total of 925 differentially expressed genes of activated macrophages were found at the intersection of the three series (GSE5099-1, GSE5099-2, and GSE18686) from the Gene Expression Omnibus (GEO) database, and a sub-network was constructed based on the protein-protein interaction (PPI) network. Four communities (K = 3) were identified from the sub-network using the CFinder software. Community 1 was considered as the gene group of interest base on the heat map. GO-BP and KEGG enrichment analysis with the DAVID software showed that the functions of the 14 genes in community 1 were mainly related to the NF-κB pathway. A network was constructed using the Cytoscape software. The diagram showed that STAT1, NFKBIA, NFKAIB, JUN, and RELA were the key genes in the regulation of macrophage activation. Among these genes, RELA (NF-κB P65) was an important member of the NF-κB family, while NFKBIA (IκBα) and NFKAIB (IκBβ) were the inhibitory factors of NF-κB. Small molecules capable of regulating these five genes were identified via the CMap software, and a network diagram was generated using the Cytoscape software to provide a reference for the development of new drugs that regulate macrophage activation.


macrophage activation NF-κB gene expression acute pancreatitis 



This study was supported by the National Natural Science Foundation of China (81370566).


  1. 1.
    Shifrin, A.L., N. Chirmule, Y. Zhang, and S.E. Raper. 2005. Macrophage ablation attenuates adenoviral vector-induced pancreatitis. Surgery 137(5): 545–551. doi: 10.1016/j.surg.2005.01.004. PMID: 15855927.PubMedCrossRefGoogle Scholar
  2. 2.
    Shah, A.U., A. Sarwar, A.I. Orabi, S. Gautam, W.M. Grant, A.J. Park, A.U. Shah, et al. 2009. Protease activation during in vivo pancreatitis is dependent on calcineurin activation. American Journal of Physiology-Gastrointestinal and Liver Physiology 297(5): G967–G973. doi: 10.1152/ajpgi.00181.2009. PMID: 20501444.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mayerle, J., A. Dummer, M. Sendler, S.R. Malla, C. van den Brandt, S. Teller, A. Aghdassi, C. Nitsche, and M.M. Lerch. 2012. Differential roles of inflammatory cells in pancreatitis. Journal of Gastroenterology and Hepatology 27(Suppl 2): 47–51. doi: 10.1111/j.1440-1746.2011.07011.x. PMID: 22320916.PubMedCrossRefGoogle Scholar
  4. 4.
    Franco-Pons, N., S. Gea-Sorli, and D. Closa. 2010. Release of inflammatory mediators by adipose tissue during acute pancreatitis. Journal of Pathology 221(2): 175–182. doi: 10.1002/path.2691. PMID: 20217859.PubMedCrossRefGoogle Scholar
  5. 5.
    Cao, J., and Q. Liu. 2013. Protective effects of sivelestat in a caerulein-induced rat acute pancreatitis model. Inflammation 36(6): 1348–1356. doi: 10.1007/s10753-013-9674-3. PMID: 23794035.PubMedCrossRefGoogle Scholar
  6. 6.
    Takei, M., M. Kobayashi, D.N. Herndon, R.B. Pollard, and F. Suzuki. 2006. Glycyrrhizin inhibits the manifestations of anti-inflammatory responses that appear in association with systemic inflammatory response syndrome (SIRS)-like reactions. Cytokine 35(5–6): 295–301. doi: 10.1016/j.cyto.2006.10.002. PMID: 17113306.PubMedCrossRefGoogle Scholar
  7. 7.
    Martinez, F.O., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. Journal of Immunology 177(10): 7303–7311. PMID: 17082649.CrossRefGoogle Scholar
  8. 8.
    Solinas, G., S. Schiarea, M. Liguori, M. Fabbri, S. Pesce, L. Zammataro, F. Pasqualini, et al. 2010. Tumor-conditioned macrophages secrete migration-stimulating factor: A new marker for M2-polarization, influencing tumor cell motility. Journal of Immunology 185(1): 642–652. doi: 10.4049/jimmunol.1000413. PMID: 20530259.CrossRefGoogle Scholar
  9. 9.
    Fuentes-Duculan, J., M. Suarez-Farinas, L.C. Zaba, K.E. Nograles, K.C. Pierson, H. Mitsui, C.A. Pensabene, et al. 2010. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. Journal of Investigative Dermatology 130(10): 2412–2422. doi: 10.1038/jid.2010.165. PMID: 20555352.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bolstad, B.M., R.A. Irizarry, M. Astrand, and T.P. Speed. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2): 185–193. doi: 10.1093/bioinformatics /19.2.185. PMID:12538238.PubMedCrossRefGoogle Scholar
  11. 11.
    Irizarry, R.A., B.M. Bolstad, F. Collin, L.M. Cope, B. Hobbs, and T.P. Speed. 2003. Summaries of affymetrix GeneChip probe level data. Nucleic Acids Research 31(4): e15. doi: 10.1093/nar/gng015. PMID:12582260.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Irizarry, R.A., B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Scherf, and T.P. Speed. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2): 249–264. doi: 10.1093/ biostatistics/4.2.249. PMID:12925520.PubMedCrossRefGoogle Scholar
  13. 13.
    Jonsson, P.F., and P.A. Bates. 2006. Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18): 2291–2297. doi: 10.1093/bioinformatics/btl390. PMID: 16844706.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Palla, G., I. Derenyi, I. Farkas, and T. Vicsek. 2005. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043): 814–818. doi: 10.1038/nature03607. PMID: 15944704.PubMedCrossRefGoogle Scholar
  15. 15.
    Jou, I.M., C.F. Lin, K.J. Tsai, and S.J. Wei. 2013. Macrophage-mediated inflammatory disorders. Mediators of Inflammation 2013: 316482. doi: 10.1155/2013/316482. PMID: 23843681.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Edwards, J.P., X. Zhang, K.A. Frauwirth, and D.M. Mosser. 2006. Biochemical and functional characterization of three activated macrophage populations. Journal of Leukocyte Biology 80(6): 1298–1307. doi: 10.1189/jlb.0406249. PMID: 16905575.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Barabasi, A.L., and Z.N. Oltvai. 2004. Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5(2): 101–113. doi: 10.1038/nrg1272. PMID: 14735121.PubMedCrossRefGoogle Scholar
  18. 18.
    Lim, J., T. Hao, C. Shaw, A.J. Patel, G. Szabo, J.F. Rual, C.J. Fisk, et al. 2006. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125(4): 801–814. doi: 10.1016/j.cell.2006.03.032. PMID: 16713569.PubMedCrossRefGoogle Scholar
  19. 19.
    Ihmels, J., G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. 2002. Revealing modular organization in the yeast transcriptional network. Nature Genetics 31(4): 370–377. doi: 10.1038/ng941. PMID: 12134151.PubMedGoogle Scholar
  20. 20.
    Newman, M.E. 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103(23): 8577–8582. doi: 10.1073/pnas.0601602103. PMID: 16723398.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hoffmann, A., G. Natoli, and G. Ghosh. 2006. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 25(51): 6706–6716. doi: 10.1038/sj.onc.1209933. PMID: 17072323.PubMedCrossRefGoogle Scholar
  22. 22.
    Kurata, H., H. El-Samad, R. Iwasaki, H. Ohtake, J.C. Doyle, I. Grigorova, C.A. Gross, and M. Khammash. 2006. Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Computational Biology 2(7): e59. doi: 10.1371/journal.pcbi.0020059. PMID: 16863396.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Xue, D., W. Zhang, Y. Zhang, H. Wang, B. Zheng, and X. Shi. 2006. Adjusting effects of baicalin for nuclear factor-kappaB and tumor necrosis factor-alpha on rats with caerulein-induced acute pancreatitis. Mediators of Inflammation 2006(5): 26295. doi: 10.1155/MI/2006/26295. PMID: 17392571.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Chen, L.F., and W.C. Greene. 2004. Shaping the nuclear action of NF-kappaB. Nature Reviews Molecular Cell Biology 5(5): 392–401. doi: 10.1038/nrm1368. PMID: 15122352.PubMedCrossRefGoogle Scholar
  25. 25.
    Blinman, T.A., I. Gukovsky, M. Mouria, V. Zaninovic, E. Livingston, S.J. Pandol, and A.S. Gukovskaya. 2000. Activation of pancreatic acinar cells on isolation from tissue: Cytokine upregulation via p38 MAP kinase. American Journal of Physiology-Cell Physiology 279(6): C1993–C2003. PMID: 11078716.PubMedGoogle Scholar
  26. 26.
    Rakonczay Jr., Z., K. Jarmay, J. Kaszaki, Y. Mandi, E. Duda, P. Hegyi, I. Boros, J. Lonovics, and T. Takacs. 2003. NF-kappaB activation is detrimental in arginine-induced acute pancreatitis. Free Radical Biology and Medicine 34(6): 696–709. doi: 10.1016/S0891-5849(02)01373-4. PMID: 12633747.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu, H.S., C.E. Pan, Q.G. Liu, W. Yang, and X.M. Liu. 2003. Effect of NF-kappaB and p38 MAPK in activated monocytes/macrophages on pro-inflammatory cytokines of rats with acute pancreatitis. World Journal of Gastroenterology 9(11): 2513–2518. PMID: 14606087.PubMedGoogle Scholar
  28. 28.
    Li, X., Z. Li, Z. Zheng, Y. Liu, and X. Ma. 2007. Virulizin, a novel immunotherapy agent, stimulates TNFalpha expression in monocytes/macrophages in vitro and in vivo. International Immunopharmacology 7(10): 1350–1359. doi: 10.1016/j.intimp.2007.06.001. PMID: 17673150.PubMedCrossRefGoogle Scholar
  29. 29.
    Ma, Z.H., Q.Y. Ma, L.C. Wang, H.C. Sha, S.L. Wu, and M. Zhang. 2005. Effect of resveratrol on peritoneal macrophages in rats with severe acute pancreatitis. Inflammation Research 54(12): 522–527. doi: 10.1007/s00011-005-1388-z. PMID: 16389574.PubMedCrossRefGoogle Scholar
  30. 30.
    Liang, T., T.F. Liu, D.B. Xue, B. Sun, and L.J. Shi. 2008. Different cell death modes of pancreatic acinar cells on macrophage activation in rats. Chinese Medical Journal 121(19): 1920–1924. PMID: 19080125.PubMedGoogle Scholar
  31. 31.
    Gutierrez, P.T., E. Folch-Puy, O. Bulbena, and D. Closa. 2008. Oxidised lipids present in ascitic fluid interfere with the regulation of the macrophages during acute pancreatitis, promoting an exacerbation of the inflammatory response. Gut 57(5): 642–648. doi: 10.1136/gut.2007.127472. PMID: 18203805.PubMedCrossRefGoogle Scholar
  32. 32.
    Li, X., Z. Li, Z. Zheng, Y. Liu, and X. Ma. 2013. Unfractionated heparin ameliorates lipopolysaccharide-induced lung inflammation by downregulating nuclear factor-kappaB signaling pathway. Inflammation 36(6): 1201–1218. doi: 10.1007/s10753-013-9656-5. PMID: 23690274.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, J.W., M.S. Lee, T.H. Kim, H.J. Lee, S.S. Hong, Y.H. Noh, B.Y. Hwang, J.S. Ro, and J.T. Hong. 2007. Inhibitory effect of inflexinol on nitric oxide generation and iNOS expression via inhibition of NF-kappaB activation. Mediators of Inflammation 2007: 93148. doi: 10.1155/2007/93148. PMID: 17541474.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wadleigh, D.J., S.T. Reddy, E. Kopp, S. Ghosh, and H.R. Herschman. 2000. Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macrophages. Journal of Biological Chemistry 275(9): 6259–6266. doi: 10.1074/jbc.275.9.6259. PMID: 10692422.PubMedCrossRefGoogle Scholar
  35. 35.
    Jobin, C., and R.B. Sartor. 2000. The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. American Journal of Physiology-Cell Physiology 278(3): C451–C462. PMID: 10712233.PubMedGoogle Scholar
  36. 36.
    Huang, L.Y., P. Chen, L.X. Xu, Y.F. Zhou, Y.P. Zhang, and Y.Z. Yuan. 2012. Fractalkine upregulates inflammation through CX3CR1 and the Jak-Stat pathway in severe acute pancreatitis rat model. Inflammation 35(3): 1023–1030. doi: 10.1007/s10753-011-9406-5. PMID: 22213034.PubMedCrossRefGoogle Scholar
  37. 37.
    Jung, H.J., S.J. Kim, W.K. Jeon, B.C. Kim, K. Ahn, K. Kim, Y.M. Kim, E.H. Park, and C.J. Lim. 2011. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-kappaB and JNK pathways. Inflammation 34(5): 352–361. doi: 10.1007/s10753-010-9241-0. PMID: 20689985.PubMedCrossRefGoogle Scholar
  38. 38.
    Gu, J., H. Zhang, L. Chen, S. Xu, G. Yuan, and X. Xu. 2011. Drug-target network and polypharmacology studies of a Traditional Chinese Medicine for type II diabetes mellitus. Computational Biology and Chemistry 35(5): 293–297. doi: 10.1016/j.compbiolchem.2011.07.003. PMID: 22000800.PubMedCrossRefGoogle Scholar
  39. 39.
    Zimmermann, G.R., J. Lehar, and C.T. Keith. 2007. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discovery Today 12(1–2): 34–42. doi: 10.1016/j.drudis.2006.11.008. PMID: 17198971.PubMedCrossRefGoogle Scholar
  40. 40.
    Borisy, A.A., P.J. Elliott, N.W. Hurst, M.S. Lee, J. Lehar, E.R. Price, G. Serbedzija, et al. 2003. Systematic discovery of multicomponent therapeutics. Proceedings of the National Academy of Sciences of the United States of America 100(13): 7977–7982. doi: 10.1073/pnas.1337088100. PMID: 12799470.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Jingmin, O., Z. Xiping, W. Chun, Y. Ping, and Y. Qian. 2012. Study of dexamethasone, baicalin and octreotide on brain injury of rats with severe acute pancreatitis. Inflammation Research 61(3): 265–275. doi: 10.1007/s00011-011-0408-4. PMID: 22166920.PubMedCrossRefGoogle Scholar
  42. 42.
    Xiping, Z., P. Yan, H. Xinmei, F. Guanghua, M. Meili, N. Jie, and Z. Fangjie. 2010. Effects of dexamethasone and Salvia miltiorrhizae on the small intestine and immune organs of rats with severe acute pancreatitis. Inflammation 33(4): 259–266. doi: 10.1007/s10753-010-9180-9. PMID: 20127399.PubMedCrossRefGoogle Scholar
  43. 43.
    Makela, A., T. Kuusi, and T. Schroder. 1997. Inhibition of serum phospholipase-A2 in acute pancreatitis by pharmacological agents in vitro. Scandinavian Journal of Clinical and Laboratory Investigation 57(5): 401–407. doi: 10.3109/00365519709084587. PMID: 9279965.PubMedCrossRefGoogle Scholar
  44. 44.
    Criddle, D.N., S. Gillies, H.K. Baumgartner-Wilson, M. Jaffar, E.C. Chinje, S. Passmore, M. Chvanov, et al. 2006. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. Journal of Biological Chemistry 281(52): 40485–40492. doi: 10.1074/jbc.M607704200. PMID: 17088248.PubMedCrossRefGoogle Scholar
  45. 45.
    Ju, K.D., J.W. Lim, K.H. Kim, and H. Kim. 2011. Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-beta1 in the pathophysiology of acute pancreatitis. Inflammation Research 60(8): 791–800. doi: 10.1007/s00011-011-0335-4. PMID: 21509626.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yingmei Zhang
    • 1
  • Yingmei Wang
    • 2
  • Ming Lu
    • 3
  • Xin Qiao
    • 3
  • Bei Sun
    • 2
  • Weihui Zhang
    • 2
  • Dongbo Xue
    • 2
  1. 1.Central LaboratoryThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  3. 3.Department of Surgery, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations