Advertisement

Inflammation

, Volume 37, Issue 3, pp 966–977 | Cite as

Cyane-carvone, a Synthetic Derivative of Carvone, Inhibits Inflammatory Response by Reducing Cytokine Production and Oxidative Stress and Shows Antinociceptive Effect in Mice

  • Thiago Henrique Costa Marques
  • Maria Leonildes Boavista Gomes Castelo Branco Marques
  • Jand-Venes R. Medeiros
  • Renan  Oliveira Silva
  • André Luiz dos Reis Barbosa
  • Tamires Cardoso Lima
  • Damião Pergentino de Sousa
  • Rivelilson Mendes de Freitas
Article
  • 323 Downloads

Abstract

Cyane-carvone (CC) was studied to elucidate its anti-inflammatory, antinociceptive, and antioxidant effects in Mus musculus. Anti-inflammatory (bradykinin, histamine, prostaglandin E2, serotonin, and carrageenan) and antinociceptive (acetic acid and formalin) models were utilized. Myeloperoxidase activity, interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and glutathione (GSH) levels were evaluated. Analysis of variance followed by Student-Newman-Keuls’ test was done. Results were compared with control groups (significantly when p < 0.05). In bradykinin, histamine, prostaglandin E2, and serotonin tests, 75 mg/kg CC decreased significantly paw edema (t = 30, 60, 90, and/or 120 min). In carrageenan test, 50 and 75 mg/kg CC (t = 3 h and t = 4 h) and 25 mg/kg CC (t = 4 h) decreased significantly paw edema. CC (75 mg/kg) inhibited significantly mieloperoxidase activity and decreased IL-1β and TNF-α, and all doses increased GSH levels. CC (75 mg/kg) decreased significantly the number of contortions of animals and time of licking (phase 2). CC showed anti-inflammatory, antinociceptive, and antioxidant effects in mice.

KEY WORDS

anti-inflammatory antinociceptive cyane-carvone mice 

Notes

Acknowledgments

This work was funded by the National Council for Scientific and Technological Development (CNPq) and Research Supporting Foundation of State of Piauí (FAPEPI/Brazil).

References

  1. 1.
    Vodovotz, Y., G. Constantine, J. Rubin, et al. 2009. Mechanistic simulations of inflammation: Current state and future prospects. Mathematical Biosciences 17: 1–10.CrossRefGoogle Scholar
  2. 2.
    Cuzzocrea, S., G. Costantino, B. Zingarelli, et al. 1999. The protective role of endogenous glutathione in carrageenan-induced pleurisy in the rat. European Journal of Pharmacology 372: 187–197.PubMedCrossRefGoogle Scholar
  3. 3.
    Loria, V., I. Dato, F. Graziani, et al. 2008. Myeloperoxidase: A new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators of Inflammation 2008: 1–4Google Scholar
  4. 4.
    Harrison, P., J.J. Pointon, K. Chapman, et al. 2008. Interleukin-1 promoter region polymorphism role in rheumatoid arthritis: A meta-analysis of IL-1B-511A/G variant reveals association with rheumatoid arthritis. Rheumatology 47(12): 1768–1770.PubMedCrossRefGoogle Scholar
  5. 5.
    Borsook, D. 2011. Neurological diseases and pain. Brain 135(2): 320–344.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Gonçalves, J.C., A.M. Alves, A.E. de Araújo, et al. 2010. Distinct effects of carvone analogues on the isolated nerve of rats. European Journal of Pharmacology 645(1–3): 108–112.PubMedCrossRefGoogle Scholar
  7. 7.
    Helander, I.M., H. Alakomi, K. Latva-Kala, et al. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry 46(9): 3590–3595.CrossRefGoogle Scholar
  8. 8.
    Smid, E.J., J.P.G. Koeken, and L.G.M. Gorris. 1996. Fungicidal and fungistatic action of the secondary plant metabolites cinnamaldehyde and carvone. In Modern fungicides and antimicrobial compounds, ed. H. Lyr, P.E. Russell, and H.D. Sisler, 173–180. Andover: Intercept.Google Scholar
  9. 9.
    Costa, D.A., G.A. Oliveira, T.C. Lima, et al. 2012. Anticonvulsant and antioxidant effects of cyano-carvone and its action on acetylcholinesterase activity in mice hippocampus. Cellular and Molecular Neurobiology 32(4): 633–640.PubMedCrossRefGoogle Scholar
  10. 10.
    Costa, D.A., G.A.L. Oliveira, J.P. Costa, et al. 2012. Avaliação da toxicidade aguda e do efeito ansiolítico de um derivado sintético da carvona. Revista Brasileira de Ciências da Saúde 16(3): 303–310.CrossRefGoogle Scholar
  11. 11.
    Cocker, W., D.H. Grayson, and P.V.R. Shannon. 1995. Hydrocyanation of some α,β-unsaturated ketones, and the synthesis of some unusual isoxazoles. Journal of the Chemical Society, Perkin Transactions 1(9): 1153–1162.CrossRefGoogle Scholar
  12. 12.
    Costa, D.A., G.A.L. de Oliveira, D.P. de Sousa, et al. 2012. Avaliação do potencial antioxidante in vitro do composto ciano-carvona. Revista de Ciências Farmacêuticas Básica e Aplicada 33(4): 567–575.Google Scholar
  13. 13.
    Institute of Laboratory Animal Resources. 1985. Guide for the care and use of laboratory animals, 6th ed. Washington, DC: National Academy Press.Google Scholar
  14. 14.
    Hargreaves, K., R. Dubner, F. Brown, et al. 1988. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.PubMedCrossRefGoogle Scholar
  15. 15.
    Winter, C.A., E.A. Risley, and C.W. Nuss. 1962. Carrageenan-induced oedema in hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of The Society for Experimental Biology and Medicine 111: 544–547.PubMedCrossRefGoogle Scholar
  16. 16.
    Kasahara, Y., H. Hikino, S. Tsurufiji, et al. 1985. Antiinflammatory actions of ephedrines in acute inflammations. Planta Medica 51: 325–331.PubMedCrossRefGoogle Scholar
  17. 17.
    Cole, H.W., C.E. Brown, D.E. Magee, et al. 1995. Serotonin-induced paw edema in the rat: Pharmacological profile. General Pharmacology 26(2): 431–436.PubMedCrossRefGoogle Scholar
  18. 18.
    Yesilada, E., and E. Küpeli. 2002. Berberis crategina DC. Root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats. Journal of Ethnopharmacology 79: 237–248.PubMedCrossRefGoogle Scholar
  19. 19.
    Bradley, P.P., D.A. Priebat, R.D. Christensen, et al. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology 78: 206–209.PubMedCrossRefGoogle Scholar
  20. 20.
    Silva, R.O., Sousa, F.B.M. , Damasceno S.R.B. et al. 2013. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundamental & Clinical Pharmacology 1-27Google Scholar
  21. 21.
    Cunha, F.Q., M.A. Boukili, J.I.B. Motta, et al. 1993. Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat. European Journal of Pharmacology 238: 47–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry 24: 1992–2005.Google Scholar
  23. 23.
    Koster, R., M. Anderson, and E.J. De Beer. 1959. Acetic acid for analgesic screening. Federation Proceedings 18: 412–416.Google Scholar
  24. 24.
    Hunskaar, S., and K. Hole. 1987. The formalin test in mice dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–114.PubMedCrossRefGoogle Scholar
  25. 25.
    Dash, S., S.K. Kanungo, and S.C. Dinda. 2013. Anti-inflammatory activity of Aponogeton natans (Linn.) Engl. & Krause in different experimental animal models. Der Pharmacia Lettre 5(1): 136–140.Google Scholar
  26. 26.
    Campos, M.M., and J.B. Calixto. 1995. Involvement of B1 and B2 receptors in bradykinin-induced rat paw oedema. British Journal of Pharmacology 114: 1005–1013.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Posadas, I., M. Bucci, F. Roviezzo, et al. 2004. Carageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. British Journal of Pharmacology 142: 331–338.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Samad, T.A., A. Sapirstein, and C.J. Woolf. 2002. Prostanoids and pain: Unraveling mechanisms and revealing therapeutic targets. Trends in Molecular Medicine 8(8): 390–396.PubMedCrossRefGoogle Scholar
  29. 29.
    Linardi, A., S.K.P. Costa, G.R. Da Silva, et al. 2002. Involvement of kinins, mast cells and sensory neurons in the plasma exudation and paw edema induced by staphylococcal enterotoxin B in the mouse. European Journal of Pharmacology 399: 235–242.CrossRefGoogle Scholar
  30. 30.
    Cuman, R.K.N., C.A. Bersani-Amadio, and Z.B. Fortes. 2001. Influence of type 2 diabetes on the inflammatory response in rat. Inflammation Research 50: 460–465.PubMedCrossRefGoogle Scholar
  31. 31.
    Skidmor, I., and M. Whitehouse. 1967. Biochemical properties of anti-inflammatory drugs X: The inhibition of serotonin formation in vitro and inhibition of the esterase activity of α-chymyotrysin. Biochemical Pharmacology 16: 737–751.CrossRefGoogle Scholar
  32. 32.
    Di Rosa, M., J.P. Giroud, and D.A. Willoughby. 1971. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. The Journal of Pathology 104: 15–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Di Rosa, M., J.M. Papadimitriou, and D.A. Willoughby. 1971. A histopathological and pharmacological analysis of the mode of action of nonsteroidal anti-inflammatory drugs. The Journal of Pathology 105: 239–256.PubMedCrossRefGoogle Scholar
  34. 34.
    Di Rosa, M. 1972. Biological properties of carrageenan. Journal of Pharmacy and Pharmacology 24: 89–102.PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia Leme, J., L. Hamamura, M.P. Leite, et al. 1973. Pharmacological analysis of the acute inflammatory process induced in the rat’s paw by local injection of carrageenin and by heating. British Journal of Pharmacology 48: 88–96.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Nantel, F., D. Denis, R. Gordon, et al. 1999. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. British Journal of Pharmacology 128: 853–859.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Henriques, M.G.M.O., P.M.R. Silva, M.A. Martins, et al. 1987. Mouse paw oedema. A new model for inflammation. Brazilian Journal Of Medical and Biological Research 20: 243–249.PubMedGoogle Scholar
  38. 38.
    Morris, C.J. 2003. Carrageenan-induced paw edema in the rat and mouse. Methods in Molecular Biology 225: 115–121.PubMedGoogle Scholar
  39. 39.
    Salvemini, D., Z.Q. Wang, and P.S. Wyatt. 1996. Wyatt et al. Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. British Journal of Pharmacology 118: 829–838.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Banani, A., N. Maleki-Dizaji, H. Niknahad, et al. 2012. N-Acetylaspartylglutamate (NAAG) exhibits anti-inflammatory effects on carrageenan-induced paw edema model of inflammation in rats. African Journal of Pharmacy and Pharmacology 6(23): 1702–1709.Google Scholar
  41. 41.
    Gabay, C., C. Lamacchia, and G. Palmer. 2010. IL-1 pathways in inflammation and human diseases. Nature Reviews. Rheumatology 6(4): 232–241.PubMedCrossRefGoogle Scholar
  42. 42.
    Esposito, E., and S. Cuzzocrea. 2009. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Current Medicinal Chemistry 16(24): 3152–3167.PubMedCrossRefGoogle Scholar
  43. 43.
    Liao, J.C., J.S. Deng, C.S. Chiu, et al. 2012. Anti-inflammatory activities of Cinnamomum cassia constituents in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine 2012: 1–12.Google Scholar
  44. 44.
    Cuzzocrea, S. 2005. Shock, inflammation and PARP. Pharmacological Research 52: 72–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Negus, S.S., T.W. Bandera, M.R. Brandt, et al. 2006. Preclinical assessment of candidate analgesic drugs: Recent advances and future challenges. Journal of Pharmacology and Experimental Therapeutics 19: 507–514.CrossRefGoogle Scholar
  46. 46.
    Zeilhofer, H.U. 2005. Synaptic modulation in pain pathways. Reviews of Physiology, Biochemistry and Pharmacology 154: 73–100.PubMedGoogle Scholar
  47. 47.
    Mazur, A., and S. Fidecka. 2011. The antinociceptive effects of topiramate evaluated in writhing test in mice. Current Issues in Pharmacy and Medical Sciences 24(1): 111–120.Google Scholar
  48. 48.
    Puig, S., and L.S. Sorkin. 1996. Formalin-evoked activity in identified primary afferent fibers: Systemic lidocaine suppresses phase-2 activity. Pain 64: 345–355.PubMedCrossRefGoogle Scholar
  49. 49.
    Han, Y.K., S.H. Lee, H.J. Jeong, et al. 2012. Analgesic effects of intrathecal curcumin in the rat formalin test. The Korean Journal of Pain 25(1): 1–6.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thiago Henrique Costa Marques
    • 1
  • Maria Leonildes Boavista Gomes Castelo Branco Marques
    • 1
  • Jand-Venes R. Medeiros
    • 2
  • Renan  Oliveira Silva
    • 2
  • André Luiz dos Reis Barbosa
    • 2
  • Tamires Cardoso Lima
    • 3
  • Damião Pergentino de Sousa
    • 4
  • Rivelilson Mendes de Freitas
    • 1
  1. 1.Laboratório de Pesquisa em Neuroquímica Experimental, Curso de FarmáciaUniversidade Federal do PiauíTeresinaBrazil
  2. 2.Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC)Federal University of Piauí (UFPI)ParnaíbaBrazil
  3. 3.Post-Graduate Program in Pharmaceutics SciencesFederal University of SergipeSão CristóvãoBrazil
  4. 4.Department of Pharmaceutical ScienceFederal University of ParaibaJoão PessoaBrazil

Personalised recommendations