, Volume 38, Issue 3, pp 1337–1346 | Cite as

Recombinant TB9.8 of Mycobacterium bovis Triggers the Production of IL-12 p40 and IL-6 in RAW264.7 Macrophages via Activation of the p38, ERK, and NF-κB Signaling Pathways

  • Hong Jia
  • Shuqing Liu
  • Jing Wu
  • Shaohua Hou
  • Ting Xin
  • Xiaoyu Guo
  • Weifeng Yuan
  • Xintao Gao
  • Gaimei Zhang
  • Ming Li
  • Hongfei Qu
  • Hongfei Zhu


The TB9.8 of Mycobacterium bovis can induce strong antigen-specific T-cell responses in proliferation assays and IFN-γ assays. However, whether and how TB9.8 activates innate immune cells remain unclear. Therefore, recombinant protein TB9.8 (rTB9.8)-induced proinflammatory cytokine profile by RAW264.7 cells was investigated and the related signaling pathway was studied. Stimulation with rTB9.8 triggered RAW264.7 cells to produce IL-6 and IL-12 p40. In addition, rTB9.8 activated the mitogen-activated protein kinase (MAPK) cascade in RAW264.7 cells by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) and also promoted nuclear translocation of phosphorylated p38 and ERK1/2. Furthermore, rTB9.8 activated nuclear factor κB (NF-κB) signaling pathway by inducing p65 translocation into the nucleus and the phosphorylation of IκBα in the cytosol. Blocking assays showed that specific inhibitors of ERK1/2, p38, and IκBα can significantly reduce the expression of IL-6 and IL-12 p40, which demonstrated that rTB9.8-mediated cytokine production is dependent on the activation of these kinases. Thus, this study demonstrates that rTB9.8 can activate RAW264.7 and trigger IL-6 and IL-12 p40 production via the ERK, p38, and NF-κB signaling pathways.


TB9.8 Mycobacterium bovis RAW264.7 cell MAPK NF-κB signaling pathways 



This work was supported by the National Science Foundation of China (No. 31302130), the Special Fund for the Agricultural Science and Technology Innovation Program (ASTIP-IAS-11), and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA101302). The authors are especially grateful to the imaging application scientist Miao Lin from Merck Chemicals (Shanghai) Co., Ltd., Beijing Branch.

Conflict of Interest

The authors have no financial conflicts of interest.


  1. 1.
    Smith, N.H., S.V. Gordon, R. de la Rua-Domenech, R.S. Clifton-Hadley, and R.G. Hewinson. 2006. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature Reviews Microbiology 4: 670–681.CrossRefPubMedGoogle Scholar
  2. 2.
    Michel, A.L., B. Muller, and P.D. van Helden. 2010. Mycobacterium bovis at the animal-human interface: a problem, or not? Veterinary Microbiology 140: 371–381.CrossRefPubMedGoogle Scholar
  3. 3.
    Corner, L.A., D. Murphy, and E. Gormley. 2011. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. Journal of Comparative Pathology 144: 1–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Cosivi, O., F.X. Meslin, C.J. Daborn, and J.M. Grange. 1995. Epidemiology of Mycobacterium bovis infection in animals and humans, with particular reference to Africa. Revue Scientifique et Technique 14: 733–746.PubMedGoogle Scholar
  5. 5.
    Flynn, J.L., and J. Chan. 2001. Immunology of tuberculosis. Annual Review of Immunology 19: 93–129.CrossRefPubMedGoogle Scholar
  6. 6.
    Xu, G., J. Wang, G.F. Gao, and C.H. Liu. 2014. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell 5(10): 728–736.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Jo, E.K., C.S. Yang, C.H. Choi, and C.V. Harding. 2007. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cellular Microbiology 9: 1087–1098.CrossRefPubMedGoogle Scholar
  8. 8.
    Magee, D.A., K.M. Conlon, N.C. Nalpas, J.A. Browne, C. Pirson, C. Healy, et al. 2014. Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection. Tuberculosis (Edinburgh, Scotland) 94: 441–450.CrossRefGoogle Scholar
  9. 9.
    Petursdottir, D.H., O.D. Chuquimia, R. Freidl, and C. Fernandez. 2014. Macrophage control of phagocytosed mycobacteria is increased by factors secreted by alveolar epithelial cells through nitric oxide independent mechanisms. PLoS ONE 9: e103411.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Madhani, H.D., and G.R. Fink. 1998. The riddle of MAP kinase signaling specificity. Trends in Genetics 14: 151–155.CrossRefPubMedGoogle Scholar
  11. 11.
    Dong, C., R.J. Davis, and R.A. Flavell. 2002. MAP kinases in the immune response. Annual Review of Immunology 20: 55–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Maiti, D., A. Bhattacharyya, and J. Basu. 2001. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. Journal of Biological Chemistry 276: 329–333.CrossRefPubMedGoogle Scholar
  13. 13.
    Mendez-Samperio, P., A. Perez, and L. Rivera. 2009. Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-induced activation of PI3K/Akt and NF-kB signaling pathways regulates expression of CXCL10 in epithelial cells. Cellular Immunology 256: 12–18.CrossRefPubMedGoogle Scholar
  14. 14.
    Chan, E.D., K.R. Morris, J.T. Belisle, P. Hill, L.K. Remigio, P.J. Brennan, et al. 2001. Induction of inducible nitric oxide synthase-NO by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways. Infection and Immunity 69: 2001–2010.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Jones, B.W., T.K. Means, K.A. Heldwein, M.A. Keen, P.J. Hill, J.T. Belisle, et al. 2001. Different Toll-like receptor agonists induce distinct macrophage responses. Journal of Leukocyte Biology 69: 1036–1044.PubMedGoogle Scholar
  16. 16.
    Pearson, G., F. Robinson, T.B. Gibson, B.-E. Xu, M. Karandikar, K. Berman, et al. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews 22: 153–183.PubMedGoogle Scholar
  17. 17.
    Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912.CrossRefPubMedGoogle Scholar
  18. 18.
    Kang S.R., Han D.Y, Park K.I., Park H.S., Cho Y.B., Lee H.J., et al. 2011. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW 264.7 cells via NF-kappaB signal pathway. Evidence-based complementary and alternative medicine: eCAM 2011Google Scholar
  19. 19.
    Oh, Y.C., Y.H. Jeong, J.H. Ha, W.K. Cho, and J.Y. Ma. 2014. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells. BMC Complementary and Alternative Medicine 14: 242.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Kumar, A., R. Murphy, P. Robinson, L. Wei, and A.M. Boriek. 2004. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 18: 1524–1535.CrossRefGoogle Scholar
  21. 21.
    Li, W., Q. Zhao, W. Deng, T. Chen, M. Liu, and J. Xie. 2014. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling. PLoS ONE 9: e94418.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Liu, S., H. Jia, S. Hou, G. Zhang, T. Xin, H. Li, et al. 2014. Recombinant TB10.4 of Mycobacterium bovis induces cytokine production in RAW264.7 macrophages through activation of the MAPK and NF-kappaB pathways via TLR2. Molecular Immunology 62: 227–234.CrossRefPubMedGoogle Scholar
  23. 23.
    Ilghari, D., K.L. Lightbody, V. Veverka, L.C. Waters, F.W. Muskett, P.S. Renshaw, et al. 2011. Solution structure of the Mycobacterium tuberculosis EsxG⋅EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. Journal of Biological Chemistry 286: 29993–30002.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Billeskov, R., C. Vingsbo-Lundberg, P. Andersen, and J. Dietrich. 2007. Induction of CD8 T cells against a novel epitope in TB10.4: correlation with mycobacterial virulence and the presence of a functional region of difference-1. Molecular Immunology 179: 3973–3981.Google Scholar
  25. 25.
    Skjot, R.L., I. Brock, S.M. Arend, M.E. Munk, M. Theisen, T.H. Ottenhoff, et al. 2002. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infection and Immunity 70: 5446–5453.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Al-Attiyah, R., A.S. Mustafa, A.T. Abal, A.S. El-Shamy, W. Dalemans, and Y.A. Skeiky. 2004. In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clinical and Experimental Immunology 138: 139–144.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Liu, S., R. Tobias, S. McClure, G. Styba, Q. Shi, and G. Jackowski. 1997. Removal of endotoxin from recombinant protein preparations. Clinical Biochemistry 30: 455–463.CrossRefPubMedGoogle Scholar
  28. 28.
    George, T.C., S.L. Fanning, P. Fitzgerald-Bocarsly, R.B. Medeiros, S. Highfill, Y. Shimizu, et al. 2006. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. Journal of Immunological Methods 311: 117–129.CrossRefPubMedGoogle Scholar
  29. 29.
    Chen, S.-T., J.-Y. Li, Y. Zhang, X. Gao, and H. Cai. 2012. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. The Journal of Immunology 188: 668–677.CrossRefPubMedGoogle Scholar
  30. 30.
    Jung, S.-B., C.-S. Yang, J.-S. Lee, A.-R. Shin, S.-S. Jung, J.W. Son, et al. 2006. The mycobacterial 38-kDa glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infection and Immunity 74: 2686–2696.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    López, M., L.M. Sly, Y. Luu, D. Young, H. Cooper, and N.E. Reiner. 2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. The Journal of Immunology 170: 2409–2416.CrossRefPubMedGoogle Scholar
  32. 32.
    Ottenhoff, T.H., F.A. Verreck, E.G. Lichtenauer-Kaligis, M.A. Hoeve, O. Sanal, and J.T. van Dissel. 2002. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nature Genetics 32: 97–105.CrossRefPubMedGoogle Scholar
  33. 33.
    Beltan, E., L. Horgen, and N. Rastogi. 2000. Secretion of cytokines by human macrophages upon infection by pathogenic and non-pathogenic mycobacteria. Microbial Pathogenesis 28: 313–318.CrossRefPubMedGoogle Scholar
  34. 34.
    Prins, J.M., E.J. Kuijper, M. Mevissen, P. Speelman, and S. Van Deventer. 1995. Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum. Infection and Immunity 63: 2236–2242.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Sieling, P.A., X.-H. Wang, M.K. Gately, J.L. Oliveros, T. McHugh, P.F. Barnes, et al. 1994. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. The Journal of Immunology 153: 3639–3647.PubMedGoogle Scholar
  36. 36.
    Trinchieri, G. 1995. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annual Review of Immunology 13: 251–276.CrossRefPubMedGoogle Scholar
  37. 37.
    Mendez-Samperio, P. 2010. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases 14: e366–e371.CrossRefGoogle Scholar
  38. 38.
    Cooper, A.M., J. Magram, J. Ferrante, and I.M. Orme. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. The Journal of Experimental Medicine 186: 39–45.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Fulton, S., J. Cross, Z. Toossi, and W. Boom. 1998. Regulation of interleukin-12 by interleukin-10, transforming growth factor-β, tumor necrosis factor-α, and interferon-γ in human monocytes infected with Mycobacterium tuberculosis H37Ra. Journal of Infectious Diseases 178: 1105–1114.CrossRefPubMedGoogle Scholar
  40. 40.
    Isler, P., B.G. de Rochemonteix, F. Songeon, N. Boehringer, and L.P. Nicod. 1999. Interleukin-12 production by human alveolar macrophages is controlled by the autocrine production of interleukin-10. American Journal of Respiratory Cell and Molecular Biology 20: 270–278.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee, J.C., J.T. Laydon, P.C. McDonnell, T.F. Gallagher, S. Kumar, D. Green, et al. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746.CrossRefPubMedGoogle Scholar
  42. 42.
    Luo, Y., M. Liu, Y. Dai, X. Yao, Y. Xia, G. Chou, et al. 2010. Norisoboldine inhibits the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells by down-regulating the activation of MAPKs but not NF-kappaB. Inflammation 33: 389–397.CrossRefPubMedGoogle Scholar
  43. 43.
    Reiling, N., A. Blumenthal, H.-D. Flad, M. Ernst, and S. Ehlers. 2001. Mycobacteria-induced TNF-α and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. The Journal of Immunology 167: 3339–3345.CrossRefPubMedGoogle Scholar
  44. 44.
    Denkers, E.Y., B.A. Butcher, L. Del Rio, and L. Kim. 2004. Manipulation of mitogen-activated protein kinase/nuclear factor-κB-signaling cascades during intracellular Toxoplasma gondii infection. Immunological Reviews 201: 191–205.CrossRefPubMedGoogle Scholar
  45. 45.
    Alemán, M., P. Schierloh, S. Silvia, R.M. Musella, M.A. Saab, M. Baldini, et al. 2004. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infection and Immunity 72: 5150–5158.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Lee, J.S., J. Son, S.B. Jung, Y.M. Kwon, C.S. Yang, J.H. Oh, et al. 2006. Ex vivo responses for interferon-gamma and proinflammatory cytokine secretion to low-molecular-weight antigen MTB12 of Mycobacterium tuberculosis during human tuberculosis. Scandinavian Journal of Immunology 64: 145–154.CrossRefPubMedGoogle Scholar
  47. 47.
    Ashall, L., C.A. Horton, D.E. Nelson, P. Paszek, C.V. Harper, K. Sillitoe, et al. 2009. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324: 242–246.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Valentinis, B., A. Bianchi, D. Zhou, A. Cipponi, F. Catalanotti, V. Russo, et al. 2005. Direct effects of polymyxin B on human dendritic cells maturation. The role of IkappaB-alpha/NF-kappaB and ERK1/2 pathways and adhesion. The Journal of Biological Chemistry 280: 14264–14271.CrossRefPubMedGoogle Scholar
  49. 49.
    Natarajan, P., and S. Narayanan. 2007. Mycobacterium tuberculosis H37Rv induces monocytic release of interleukin-6 via activation of mitogen-activated protein kinases: inhibition by N-acetyl-L-cysteine. FEMS Immunology and Medical Microbiology 50: 309–318.CrossRefPubMedGoogle Scholar
  50. 50.
    Deng, W., W. Li, J. Zeng, Q. Zhao, C. Li, Y. Zhao, et al. 2014. Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-kappaB signaling pathways. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 33: 273–288.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hong Jia
    • 1
  • Shuqing Liu
    • 1
  • Jing Wu
    • 1
  • Shaohua Hou
    • 1
  • Ting Xin
    • 1
  • Xiaoyu Guo
    • 1
  • Weifeng Yuan
    • 1
  • Xintao Gao
    • 2
  • Gaimei Zhang
    • 1
  • Ming Li
    • 1
  • Hongfei Qu
    • 3
  • Hongfei Zhu
    • 1
    • 4
  1. 1.Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Graduate SchoolChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  3. 3.China Institute of Veterinary Drug ControlBeijingPeople’s Republic of China
  4. 4.Department of Veterinary Medicine, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations