, Volume 38, Issue 3, pp 1020–1027 | Cite as

Supplemental Carvacrol Can Reduce the Severity of Inflammation by Influencing the Production of Mediators of Inflammation

  • Mehmet Kara
  • Sema Uslu
  • Fatih Demirci
  • Halide Edip Temel
  • Canan Baydemir


Carvacrol (CVC) is a monoterpenic phenol, which is present in the essential oil of various plants. It has been widely used both as antibacterial feed additive and food preservative. Therefore, our objective was to evaluate the prophylactic effects of carvacrol on inflammatory mediators of sepsis. Serum tumor necrosis factor alpha and interleukin 6 levels as proinflammatory markers were evaluated using an enzyme-linked immunosorbent assay technique. Malondialdehyde (MDA) was determined in the sample by using thiobarbituric acid test. Nitric oxide (NO) levels and arginase activity and also all measurements were evaluated after 24 h from lipopolysaccharide (LPS) injections done (1 mg/kg i.p.). All carvacrol doses (20, 40, and 80 mg/kg) were given by intra gastric gavage during six days before LPS injection (7th day). Proinflammatory cytokines, MDA, NO levels, and arginase activity were decreased by carvacrol according to the carvacrol doses. These results indicate that carvacrol may have a potent anti-inflammatory and antioxidant effects in a dose-dependent manner. Subchronic use of CVC can be assisted to pre-treat of sepsis as a prophylactic.


arginase carvacrol interleukin-6 nitric oxide sepsis tumor necrosis factor alpha 







interleukin 6






nitric oxide


tumor necrosis factor alpha


Conflicts of Interest

The authors have no conflicting financial interests.


  1. 1.
    Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews Immunology 8(10): 776–787.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Ward, P.A. 2012. New approaches to the study of sepsis. EMBO Molecular Medicine 4(12): 1234–1243.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Olinga, P., M.T. Merema, M.H. de Jager, F. Derks, B.N. Melgert, H. Moshage, et al. 2001. Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. Journal of Hepatology 35(2): 187–194.CrossRefPubMedGoogle Scholar
  4. 4.
    Parratt, J.R. 1998. Nitric oxide in sepsis and endotoxaemia. The Journal of Antimicrobial Chemotherapy 41(Suppl A): 31–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Rosengarten, B., S. Wolff, S. Klatt, and R.T. Schermuly. 2009. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. Critical Care 13(4): R139.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Popovic, P.J., H.J. Zeh 3rd, and J.B. Ochoa. 2007. Arginine and immunity. The Journal of Nutrition 137(6 Suppl 2): 1681S–1686S.PubMedGoogle Scholar
  7. 7.
    Bronte, V., and P. Zanovello. 2005. Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology 5(8): 641–654.CrossRefPubMedGoogle Scholar
  8. 8.
    Bayramoglu G, Senturk H, Bayramoglu A, Uyanoglu M, Colak S, Ozmen A, et al. Carvacrol partially reverses symptoms of diabetes in STZ-induced diabetic rats. Cytotechnology. 2013.Google Scholar
  9. 9.
    Lei, J., M. Leser, and E. Enan. 2010. Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochemical Pharmacology 79(7): 1062–1071.CrossRefPubMedGoogle Scholar
  10. 10.
    Koparal, A.T., and M. Zeytinoglu. 2003. Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology 43(1–3): 149–154.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Baser, K.H.C. 2008. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design 14(29): 3106–3119.CrossRefPubMedGoogle Scholar
  12. 12.
    Jayakumar, S., A. Madankumar, S. Asokkumar, S. Raghunandhakumar, K. Gokula dhas, S. Kamaraj, et al. 2012. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Molecular and Cellular Biochemistry 360(1–2): 51–60.CrossRefPubMedGoogle Scholar
  13. 13.
    Aristatile, B., K.S. Al-Numair, C. Veeramani, and K.V. Pugalendi. 2009. Effect of carvacrol on hepatic marker enzymes and antioxidant status in d-galactosamine-induced hepatotoxicity in rats. Fundamental & Clinical Pharmacology 23(6): 757–765.CrossRefGoogle Scholar
  14. 14.
    Recknagel, P., F.A. Gonnert, E. Halilbasic, M. Gajda, N. Jbeily, A. Lupp, et al. 2013. Mechanisms and functional consequences of liver failure substantially differ between endotoxaemia and faecal peritonitis in rats. Liver International 33(2): 283–293.CrossRefPubMedGoogle Scholar
  15. 15.
    Williamson K, Hensley K, Floyd R (2003) Fluorometric and colorimetric assessment of thiobarbituric acid-reactive lipid aldehydes in biological matrices. In: Hensley K, Floyd R (eds) Methods in biological oxidative stress. Methods in pharmacology and toxicology: Humana Press; 2003. p. 57–65.Google Scholar
  16. 16.
    Cortas, N.K., and N.W. Wakid. 1990. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clinical Chemistry 36(8 Pt 1): 1440–1443.PubMedGoogle Scholar
  17. 17.
    Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1): 62–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Corraliza, I.M., M.L. Campo, G. Soler, and M. Modolell. 1994. Determination of arginase activity in macrophages: a micromethod. Journal of Immunological Methods 174(1–2): 231–235.CrossRefPubMedGoogle Scholar
  19. 19.
    Munder, M., K. Eichmann, and M. Modolell. 1998. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. Journal of Immunology 160(11): 5347–5354.Google Scholar
  20. 20.
    Kavoosi, G., and J.A. Teixeira da Silva. 2012. Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in glucose-stimulated human monocyte. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50(9): 3079–3085.CrossRefGoogle Scholar
  21. 21.
    Guimarães, A.G., M.A. Xavier, M.T. de Santana, E.A. Camargo, C.A. Santos, F.A. Brito, et al. 2012. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn-Schmiedeberg's Archives of Pharmacology 385(3): 253–263.CrossRefPubMedGoogle Scholar
  22. 22.
    Lima, M.S., L.J. Quintans-Júnior, W.A. de Santana, C. Martins Kaneto, M.B. Pereira Soares, and C.F. Villarreal. 2013. Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. European Journal of Pharmacology 699(1–3): 112–117.CrossRefGoogle Scholar
  23. 23.
    Fehrenbacher JC, Vasko MR, Duarte DB (2012) Models of inflammation: Carrageenan- or complete Freund’s Adjuvant (CFA)-induced edema and hypersensitivity in the rat. Current Protocols in Pharmacology. 2012; Chapter 5:Unit5.4.Google Scholar
  24. 24.
    Essani, N.A., M.A. Fisher, and H. Jaeschke. 1997. Inhibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-1 gene transcription, and protection against endotoxin-induced liver injury. Shock 7(2): 90–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Chang, C.K., M.V. Albarillo, and W. Schumer. 2001. Therapeutic effect of dimethyl sulfoxide on ICAM-1 gene expression and activation of NF-kappaB and AP-1 in septic rats. The Journal of Surgical Research 95(2): 181–187.CrossRefPubMedGoogle Scholar
  26. 26.
    Chang, C.K., S. Llanes, and W. Schumer. 1999. Inhibitory effect of dimethyl sulfoxide on nuclear factor-kappa B activation and intercellular adhesion molecule 1 gene expression in septic rats. The Journal of Surgical Research 82(2): 294–299.CrossRefPubMedGoogle Scholar
  27. 27.
    Çakmak A AS. Variation of the analgesic effect of carvacrol: influence of solvents. 6th European Congress of Pharmacology 2012:P318.Google Scholar
  28. 28.
    Kaplanski, G., V. Marin, F. Montero-Julian, A. Mantovani, and C. Farnarier. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in Immunology 24(1): 25–29.CrossRefPubMedGoogle Scholar
  29. 29.
    Buras, J.A., B. Holzmann, and M. Sitkovsky. 2005. Animal models of sepsis: setting the stage. Nature Reviews Drug Discovery 4(10): 854–865.CrossRefPubMedGoogle Scholar
  30. 30.
    JONES, S.A., S. HORIUCHI, N. TOPLEY, N. YAMAMOTO, and G.M. FULLER. 2001. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. The FASEB Journal 15(1): 43–58.CrossRefGoogle Scholar
  31. 31.
    Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Current Drug Targets. Inflammation and Allergy 4(4): 471–479.CrossRefPubMedGoogle Scholar
  32. 32.
    Sharma, J.N., A. Al-Omran, and S.S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6): 252–259.CrossRefPubMedGoogle Scholar
  33. 33.
    Hotta, M., R. Nakata, M. Katsukawa, K. Hori, S. Takahashi, and H. Inoue. 2010. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. Journal of Lipid Research 51(1): 132–139.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Feng, X., and A. Jia. 2014. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice. Inflammation 37(4): 1091–1101.CrossRefPubMedGoogle Scholar
  35. 35.
    Moraes, L.A., L. Piqueras, and D. Bishop-Bailey. 2006. Peroxisome proliferator-activated receptors and inflammation. Pharmacology and Therapeutics 110(3): 371–385.CrossRefPubMedGoogle Scholar
  36. 36.
    Koksal, G.M., C. Sayilgan, S. Aydin, H. Oz, and H. Uzun. 2004. Correlation of plasma and tissue oxidative stresses in intra-abdominal sepsis. Journal of Surgical Research 122(2): 180–183.CrossRefPubMedGoogle Scholar
  37. 37.
    Lorente, L., M.M. Martin, P. Abreu-Gonzalez, A. Dominguez-Rodriguez, L. Labarta, C. Diaz, et al. 2013. Prognostic value of malondialdehyde serum levels in severe sepsis: a multicenter study. PloS One 8(1): e53741.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Aydın E, Türkez H, Keleş MS. The effect of carvacrol on healthy neurons and N2a cancer cells: Some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology. 2013.Google Scholar
  39. 39.
    Carraway, M.S., C.A. Piantadosi, C.P. Jenkinson, and Y.C. Huang. 1998. Differential expression of arginase and iNOS in the lung in sepsis. Experimental Lung Research 24(3): 253–268.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang, W., B. Baban, M. Rojas, S. Tofigh, S.K. Virmani, C. Patel, et al. 2009. Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. The American Journal of Pathology 175(2): 891–902.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Lee, E.J., Y.R. Lee, H.K. Joo, E.J. Cho, S. Choi, K.C. Sohn, et al. 2013. Arginase II inhibited lipopolysaccharide-induced cell death by regulation of iNOS and Bcl-2 family proteins in macrophages. Molecules and Cells 35(5): 396–401.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Munder, M., H. Schneider, C. Luckner, T. Giese, C.D. Langhans, J.M. Fuentes, et al. 2006. Suppression of T-cell functions by human granulocyte arginase. Blood 108(5): 1627–1634.CrossRefPubMedGoogle Scholar
  43. 43.
    Rodriguez, P.C., D.G. Quiceno, and A.C. Ochoa. 2007. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4): 1568–1573.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Salimuddin, A. Nagasaki, T. Gotoh, H. Isobe, and M. Mori. 1999. Regulation of the genes for arginase isoforms and related enzymes in mouse macrophages by lipopolysaccharide. The American Journal of Physiology 277(1 Pt 1): E110–E117.PubMedGoogle Scholar
  45. 45.
    Louis, C.A., J.S. Reichner, W.L. Henry Jr., B. Mastrofrancesco, T. Gotoh, M. Mori, et al. 1998. Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. The American Journal of Physiology 274(3 Pt 2): R775–R782.PubMedGoogle Scholar
  46. 46.
    Schilling T, Miralles F, Eder C. TRPM7 channels regulate proliferation and polarisation of macrophages. Journal of Cell Science. 2014.Google Scholar
  47. 47.
    Parnas, M., M. Peters, D. Dadon, S. Lev, I. Vertkin, I. Slutsky, et al. 2009. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45(3): 300–309.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mehmet Kara
    • 1
  • Sema Uslu
    • 1
  • Fatih Demirci
    • 2
  • Halide Edip Temel
    • 3
  • Canan Baydemir
    • 4
  1. 1.Department of Medical Biochemistry, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
  2. 2.Department of Pharmacognosy, Faculty of PharmacyAnadolu UniversityEskisehirTurkey
  3. 3.Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskisehirTurkey
  4. 4.Department of Biostatistics and medical informatics, Faculty of MedicineKocaeli UniversityKocaeliTurkey

Personalised recommendations