Advertisement

Inflammation

, Volume 38, Issue 1, pp 338–347 | Cite as

Relationship of Serum Mannose-Binding Lectin Levels with the Development of Sepsis: a Meta-analysis

  • Dong-Na Gao
  • Yu Zhang
  • Yan-Bo Ren
  • Jian Kang
  • Li Jiang
  • Zhuo Feng
  • Ya-Nan Qu
  • Qing-Hui Qi
  • Xuan Meng
Article

Abstract

Many studies have evaluated the association between serum levels of mannose-binding lectin (MBL) and sepsis; however, the findings are inconclusive and conflicting. For a better understanding of MBL in sepsis, we conducted a comprehensive meta-analysis. Potential relevant studies were identified covering Science Citation Index, the Cochrane Library, PubMed, Embase, CINAHL, and Current Contents Index databases. Two reviewers extracted data and assessed studies independently. Statistical analyses were conducted with the version 12.0 STATA statistical software. Ten papers were collected for meta-analysis. Results identified that sepsis patients had considerably lower MBL level than those in the controls (standardized mean difference (SMD) = 1.59, 95 % confidence interval (95%CI) = 0.86∼2.31, P < 0.001). Ethnicity-subgroup analysis showed that sepsis patients were associated with decreased serum MBL level in contrast to the healthy controls in Asians (SMD = 3.07, 95%CI = 1.27∼4.88, P = 0.001) and Caucasians (SMD = 1.00, 95%CI = 0.35∼1.65, P = 0.003). In the group-stratified subgroup analysis, subjects with lower serum MBL level did underpin susceptibility to sepsis in the infants subgroup (SMD = 2.57, 95%CI = 1.59∼3.55, P < 0.001); however, this was not the case in the adults subgroup (SMD = 0.13, 95%CI = −1.30∼1.55, P = 0.862). Our study suggests an important involvement of serum MBL level in sepsis patients considering their lower level compared to controls, especially among infants.

KEY WORDS

mannose-binding lectin sepsis meta-analysis 

Notes

ACKNOWLEDGMENTS

This work is funded by Surface project of National Natural Science Foundation of China (No. 81273920). We would like to acknowledge the reviewers for their helpful comments on this paper.

REFERENCES

  1. 1.
    Shime, N., T. Kawasaki, O. Saito, Y. Akamine, Y. Toda, M. Takeuchi, et al. 2012. Incidence and risk factors for mortality in paediatric severe sepsis: results from the national paediatric intensive care registry in Japan. Intensive Care Medicine 38: 1191–1197.CrossRefPubMedGoogle Scholar
  2. 2.
    Walkey, A.J., M.A. Greiner, S.R. Heckbert, P.N. Jensen, J.P. Piccini, M.F. Sinner, et al. 2013. Atrial fibrillation among Medicare beneficiaries hospitalized with sepsis: incidence and risk factors. Am Heart J 165: 949–955 e943.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Andaluz-Ojeda, D., V. Iglesias, F. Bobillo, R. Almansa, L. Rico, F. Gandia, et al. 2011. Early natural killer cell counts in blood predict mortality in severe sepsis. Critical Care 15: R243.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Nasa, P., D. Juneja, O. Singh, R. Dang, and V. Arora. 2012. Severe sepsis and its impact on outcome in elderly and very elderly patients admitted in intensive care unit. Journal of Intensive Care Medicine 27: 179–183.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang, H.E., N.I. Shapiro, M.M. Safford, R. Griffin, S. Judd, J.B. Rodgers, et al. 2013. High-sensitivity C-reactive protein and risk of sepsis. PLoS ONE 8: e69232.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Westphal, G.A., A. Koenig, M. Caldeira Filho, J. Feijo, L.T. de Oliveira, F. Nunes, et al. 2011. Reduced mortality after the implementation of a protocol for the early detection of severe sepsis. Journal of Critical Care 26: 76–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Martin, G.S. 2012. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Review of Anti-Infective Therapy 10: 701–706.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.CrossRefPubMedGoogle Scholar
  9. 9.
    Ward, P.A., and M. Bosmann. 2012. A historical perspective on sepsis. The American Journal of Pathology 181: 2–7.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Satar, M., and F. Ozlu. 2012. Neonatal sepsis: a continuing disease burden. The Turkish Journal of Pediatrics 54: 449–457.PubMedGoogle Scholar
  11. 11.
    Reinhart, K., M. Bauer, N.C. Riedemann, and C.S. Hartog. 2012. New approaches to sepsis: molecular diagnostics and biomarkers. Clinical Microbiology Reviews 25: 609–634.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Juutilainen, A., S. Hamalainen, K. Pulkki, T. Kuittinen, T. Nousiainen, E. Jantunen, et al. 2011. Biomarkers for bacteremia and severe sepsis in hematological patients with neutropenic fever: multivariate logistic regression analysis and factor analysis. Leukemia and Lymphoma 52: 2349–2355.CrossRefPubMedGoogle Scholar
  13. 13.
    Hall, T.C., D.K. Bilku, D. Al-Leswas, C. Horst, and A.R. Dennison. 2011. Biomarkers for the differentiation of sepsis and SIRS: the need for the standardisation of diagnostic studies. Irish Journal of Medical Science 180: 793–798.CrossRefPubMedGoogle Scholar
  14. 14.
    Ozdemir, O., E.C. Dinleyici, N. Tekin, O. Colak, and M.A. Aksit. 2010. Low-mannose-binding lectin levels in susceptibility to neonatal sepsis in preterm neonates with fetal inflammatory response syndrome. The Journal of Maternal-Fetal & Neonatal Medicine 23: 1009–1013.CrossRefGoogle Scholar
  15. 15.
    Frakking, F.N., N. Brouwer, N.K. van Eijkelenburg, M.P. Merkus, T.W. Kuijpers, M. Offringa, et al. 2007. Low mannose-binding lectin (MBL) levels in neonates with pneumonia and sepsis. Clinical and Experimental Immunology 150: 255–262.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    de Benedetti, F., C. Auriti, L.E. D’Urbano, M.P. Ronchetti, L. Rava, A. Tozzi, et al. 2007. Low serum levels of mannose binding lectin are a risk factor for neonatal sepsis. Pediatric Research 61: 325–328.CrossRefPubMedGoogle Scholar
  17. 17.
    Duus, K., N.M. Thielens, M. Lacroix, P. Tacnet, P. Frachet, U. Holmskov, et al. 2010. CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. The FEBS Journal 277: 4956–4964.CrossRefPubMedGoogle Scholar
  18. 18.
    Auriti, C., G. Prencipe, R. Inglese, C. Azzari, M.P. Ronchetti, A. Tozzi, et al. 2010. Role of mannose-binding lectin in nosocomial sepsis in critically ill neonates. Human Immunology 71: 1084–1088.CrossRefPubMedGoogle Scholar
  19. 19.
    Huh, J.W., K. Song, J.S. Yum, S.B. Hong, C.M. Lim, and Y. Koh. 2009. Association of mannose-binding lectin-2 genotype and serum levels with prognosis of sepsis. Critical Care 13: R176.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Shi, J., M. Xie, J.M. Wang, Y.J. Xu, W.N. Xiong, and X.S. Liu. 2013. Mannose-binding lectin two gene polymorphisms and tuberculosis susceptibility in Chinese population: a meta-analysis. Journal of Huazhong University of Science and Technology. Medical Sciences 33: 166–171.CrossRefGoogle Scholar
  21. 21.
    Wang, M., Y. Chen, Y. Zhang, L. Zhang, X. Lu, and Z. Chen. 2011. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells. Cellular and molecular immunology 8: 265–275.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Brown, K.S., M.J. Keogh, A.M. Owsianka, R. Adair, A.H. Patel, J.N. Arnold, et al. 2010. Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry. Protein & Cell 1: 664–674.CrossRefGoogle Scholar
  23. 23.
    Comar, M., L. Segat, S. Crovella, M. Bovenzi, E. Cortini, and M. Tognon. 2011. The significance of mannose-binding lectin gene polymorphisms on the risk of BK virus coinfection in women with human papillomavirus-positive cervical lesions. Human Immunology 72: 663–666.CrossRefPubMedGoogle Scholar
  24. 24.
    Olivo-Marston, S.E., P. Yang, L.E. Mechanic, E.D. Bowman, S.R. Pine, C.A. Loffredo, et al. 2009. Childhood exposure to secondhand smoke and functional mannose binding lectin polymorphisms are associated with increased lung cancer risk. Cancer Epidemiology, Biomarkers and Prevention 18: 3375–3383.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Ibernon, M., F. Moreso, J.M. Moreno, O. Bestard, J.M. Cruzado, J.M. Grinyo, et al. 2009. Low serum mannose-binding lectin as a risk factor for new onset diabetes mellitus after renal transplantation. Transplantation 88: 272–278.CrossRefPubMedGoogle Scholar
  26. 26.
    Wahab Mohamed, W.A., and M.A. Saeed. 2012. Mannose-binding lectin serum levels in neonatal sepsis and septic shock. The Journal of Maternal-Fetal & Neonatal Medicine 25: 411–414.CrossRefGoogle Scholar
  27. 27.
    Aittoniemi, J., E. Rintala, A. Miettinen, and E. Soppi. 1997. Serum mannan-binding lectin (MBL) in patients with infection: clinical and laboratory correlates. APMIS 105: 617–622.CrossRefPubMedGoogle Scholar
  28. 28.
    De Pascale, G., S.L. Cutuli, M.A. Pennisi, and M. Antonelli. 2013. The role of mannose-binding lectin in severe sepsis and septic shock. Mediators of Inflammation 2013: 625803.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Sprong, T., T.E. Mollnes, C. Neeleman, D. Swinkels, M.G. Netea, J.W. van der Meer, et al. 2009. Mannose-binding lectin is a critical factor in systemic complement activation during meningococcal septic shock. Clinical Infectious Diseases 49: 1380–1386.CrossRefPubMedGoogle Scholar
  30. 30.
    Charchaflieh, J., J. Wei, G. Labaze, Y.J. Hou, B. Babarsh, H. Stutz, et al. 2012. The role of complement system in septic shock. Clinical and Developmental Immunology 2012: 407324.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Ozkan, H., N. Koksal, M. Cetinkaya, S. Kilic, S. Celebi, B. Oral, et al. 2012. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia. Journal of Perinatology 32: 210–217.CrossRefPubMedGoogle Scholar
  32. 32.
    Levy, M.M., M.P. Fink, J.C. Marshall, E. Abraham, D. Angus, D. Cook, et al. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical Care Medicine 31: 1250–1256.CrossRefPubMedGoogle Scholar
  33. 33.
    Stang, A. 2010. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European Journal of Epidemiology 25: 603–605.CrossRefPubMedGoogle Scholar
  34. 34.
    Zintzaras, E., and J.P. Ioannidis. 2005. HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics 21: 3672–3673.CrossRefPubMedGoogle Scholar
  35. 35.
    Zintzaras, E., and J.P. Ioannidis. 2005. Heterogeneity testing in meta-analysis of genome searches. Genetic Epidemiology 28: 123–137.CrossRefPubMedGoogle Scholar
  36. 36.
    Higgins, J.P., and S.G. Thompson. 2002. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21: 1539–1558.CrossRefPubMedGoogle Scholar
  37. 37.
    Song, F., and S. Gilbody. 1998. Bias in meta-analysis detected by a simple, graphical test. Increase in studies of publication bias coincided with increasing use of meta-analysis. BMJ 316: 471.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Peters, J.L., A.J. Sutton, D.R. Jones, K.R. Abrams, and L. Rushton. 2006. Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676–680.CrossRefPubMedGoogle Scholar
  39. 39.
    Liang, J.M., D. Xie, and S.L. Tang. 2013. The plasma level and clinical significance of mannose-binding lectin in patients with sepsis. Modeling Medicine Health 29: 3366–3367.Google Scholar
  40. 40.
    Siassi, M., J. Riese, R. Steffensen, M. Meisner, S. Thiel, W. Hohenberger, et al. 2005. Mannan-binding lectin and procalcitonin measurement for prediction of postoperative infection. Critical Care 9: R483–489.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews Immunology 8: 776–787.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Cinel, I., and S.M. Opal. 2009. Molecular biology of inflammation and sepsis: a primer. Critical Care Medicine 37: 291–304.CrossRefPubMedGoogle Scholar
  43. 43.
    Worthley, D.L., D.F. Johnson, D.P. Eisen, M.M. Dean, S.L. Heatley, J.P. Tung, et al. 2009. Donor mannose-binding lectin deficiency increases the likelihood of clinically significant infection after liver transplantation. Clinical Infectious Diseases 48: 410–417.CrossRefPubMedGoogle Scholar
  44. 44.
    Takahashi, K., W.C. Chang, M. Takahashi, V. Pavlov, Y. Ishida, L. La Bonte, et al. 2011. Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation. Immunobiology 216: 96–102.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Garcia-Laorden, M.I., F. Rodriguez de Castro, J. Sole-Violan, A. Payeras, M.L. Briones, L. Borderias, et al. 2013. The role of mannose-binding lectin in pneumococcal infection. The European Respiratory Journal 41: 131–139.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, A.Q., C.L. Yue, W. Pan, J.W. Gao, L. Zeng, W. Gu, et al. 2014. Mannose-binding lectin polymorphisms and the risk of sepsis: evidence from a meta-analysis. Epidemiology and Infection 142: 2195–2206.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dong-Na Gao
    • 1
    • 2
  • Yu Zhang
    • 2
  • Yan-Bo Ren
    • 2
  • Jian Kang
    • 2
  • Li Jiang
    • 2
  • Zhuo Feng
    • 3
  • Ya-Nan Qu
    • 4
  • Qing-Hui Qi
    • 5
  • Xuan Meng
    • 1
  1. 1.Graduate School of Dalian Medical UniversityDalianPeople’s Republic of China
  2. 2.Department of Emergencythe First Affiliated Hospital of Dalian MedicalDalianPeople’s Republic of China
  3. 3.Surgery Intensive Care UnitDalian Municipal Central HospitalDalianPeople’s Republic of China
  4. 4.Department of EmergencyAffiliated Zhongshan Hospital of Dalian UniversityDalianPeople’s Republic of China
  5. 5.Department of Abdominal Emergencythe First Affiliated Hospital of Dalian Medical UniversityDalianPeople’s Republic of China

Personalised recommendations