Skip to main content
Log in

Intra-articular (IA) Ropivacaine Microparticle Suspensions Reduce Pain, Inflammation, Cytokine, and Substance P Levels Significantly More than Oral or IA Celecoxib in a Rat Model of Arthritis

  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

Current therapeutic treatment options for osteoarthritis entail significant safety concerns. A novel ropivacaine crystalline microsuspension for bolus intra-articular (IA) delivery was thus developed and studied in a peptidoglycan polysaccharide (PGPS)-induced ankle swelling rat model. Compared with celecoxib controls, both oral and IA, ropivacaine IA treatment resulted in a significant reduction of pain upon successive PGPS reactivation, as demonstrated in two different pain models, gait analysis and incapacitance testing. The reduction in pain was attended by a significant reduction in histological inflammation, which in turn was accompanied by significant reductions in the cytokines IL-18 and IL-1β. This may have been due to inhibition of substance P, which was also significantly reduced. Pharmacokinetic analysis indicated that the analgesic effects outlasted measurable ropivacaine levels in either blood or tissue. The results are discussed in the context of pharmacologic mechanisms both of local anesthetics as well as inflammatory arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chou R. 2011. Oregon evidence-based practice center analgesics for osteoarthritis: an update of the 2006 comparative effectiveness review. AHRQ Pub No 11(12)-EHC076-EF.

  2. Bijlsma, J. 2010. Patient benefit-risk in arthritis—a rheumatologist’s perspective. Rheumatology (Oxford) 49(Suppl 2): ii11–ii17.

  3. Crilly, M., A. Mangoni, and K. Knights. 2013. Aldosterone glucuronidation inhibition as a potential mechanism for arterial dysfunction associated with chronic celecoxib and diclofenac use in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology 31: 691–698.

    PubMed  Google Scholar 

  4. Upadhyay, J., S. Baker, R. Rajagovindan, M. Hart, P. Chandran, B. Hooker, S. Cassar, J. Mikusa, A. Tovcimak, M. Wald, et al. 2013. Pharmacological modulation of brain activity in a preclinical model of osteoarthritis. NeuroImage 64: 341–355.

    Article  CAS  PubMed  Google Scholar 

  5. Andersen, L., B. Kristensen, H. Husted, K. Otte, and H. Kehlet. 2008. Local anesthetics after total knee arthroplasty: intraarticular or extraarticular administration? A randomized, double-blind, placebo-controlled study. Acta Orthopaedica 79: 800–805.

    Article  PubMed  Google Scholar 

  6. Toda, S., A. Sakai, Y. Ikeda, A. Sakamoto, and H. Suzuki. 2011. A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain. Molecular Pain 7: 2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Blumenthal, S. 2006. Ropivacaine decreases inflammation in experimental endotoxin-induced lung injury. Anesthesiology 104: 961–969.

    Article  CAS  PubMed  Google Scholar 

  8. Creamer, P., M. Hunt, and P. Dieppe. 1996. Pain mechanisms in osteoarthritis of the knee: effect of intraarticular anesthetic. The Journal of Rheumatology 23: 1031–1036.

    CAS  PubMed  Google Scholar 

  9. Gazi, M., A. Issy, and R. Sakata. 2005. Intra-articular bupivacaine and morphine for knee osteoarthritis analgesia. Comparative study. Rev Bras Anestesiol 55: 491–499.

    Article  PubMed  Google Scholar 

  10. MacMahon, P., S. Eustace, and E. Kavanagh. 2009. Injectable corticosteroid and local anesthetic preparations: a review for radiologists. Radiology 252: 647.

    Article  PubMed  Google Scholar 

  11. Rabinow, B. 2004. Nanosuspensions in drug delivery. Nature Rev Drug Discovery 3: 785–796.

    Article  CAS  Google Scholar 

  12. Teeple, E., G. Jay, K. Elsaid, and B. Fleming. 2013. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS Journal 15: 438–446.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Neugebauer, V., J. Han, H. Adwanikar, Y. Fu, and G. Ji. 2007. Techniques for assessing knee joint pain in arthritis. Molecular Pain 3: 1–13.

    Article  Google Scholar 

  14. Bendele, A. 2001. Animal models of rheumatoid arthritis. Journal of Musculoskeletal and Neuronal Interactions 1: 377–385.

    CAS  PubMed  Google Scholar 

  15. Zhang, R., K. Ren, and R. Dubner. 2013. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis and Cartilage 21: 1308–1315.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Goldring, M. 2000. Osteoarthritis and cartilage: the role of cytokines. Current Rheumatology 2: 459–465.

    Article  CAS  Google Scholar 

  17. Westacott, C., and M. Sharif. 1996. Cytokines in osteoarthritis: mediators or markers of joint destruction? Seminars in Arthritis and Rheumatism 25: 254–272.

    Article  CAS  PubMed  Google Scholar 

  18. Vincent, T., R. Williams, R. Maciewicz, A. Silman, and P. Garside. 2012. Mapping pathogenesis of arthritis through small animal models. Rheumatology (Oxford) 51: 1931–1941.

  19. Esser, R., S. Stimpson, W. Cromartie, and J. Schwab. 1985. Reactivation of streptococcal cell wall-induced arthritis by homologous and heterologous cell wall polymers. Arthritis & Rheumatology 28: 1402–1411.

    Article  CAS  Google Scholar 

  20. Schwab, J., S. Anderle, R. Brown, F. Dalldorf, and R. Thompson. 1991. Pro- and anti-inflammatory roles of interleukin-1 in recurrence of bacterial cell wall-induced arthritis in rats. Infection Immunity 59: 4436–4442.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Chan, J., G. Villarreal, W. Jn, T. Stepan, H. Burstein, and S. Wahl. 2002. Intraarticular gene transfer of TNFR:Fc suppresses experimental arthritis with reduced systemic distribution of the gene product. Molecular Therapy 6: 727–736.

    Article  CAS  PubMed  Google Scholar 

  22. Dong, J., D. Jiang, Z. Wang, G. Wu, L. Miao, and L. Huang. 2013. Intra-articular delivery of liposomal celecoxib-hyaluronate combination for the treatment of osteoarthritis in rabbit model. International Journal of Pharmaceutics 441: 285–290.

    Article  CAS  PubMed  Google Scholar 

  23. Institute of Laboratory Animal Resources. 1996. Guide for the care and use of laboratory animals. Washington: National Academy Press.

    Google Scholar 

  24. Bove, S., S. Calcaterra, R. Brooker, C. Huber, R. Guzman, P. Juneau, D. Schrier, and K. Kilgore. 2003. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthritis and Cartilage 11: 821–830.

    Article  CAS  PubMed  Google Scholar 

  25. Millipore Corporation. Manual for MILLIPLEX™ MAP Kit, rat cytokine/chemokine. RCYT0-80K.6-18-09. Billerica, MA.

  26. R&D Systems, Inc. 2008. Package insert for Parameter™ substance P assay. 7515743. Minneapolis, MN.

  27. Phoenix Pharmaceuticals, Inc. Protocol for Catalog #EK-049-03, NPY (human, rat, mouse) EIA Kit. Burlingame, CA.

  28. Stolina, M., B. Bolon, D. Dwyer, S. Middleton, D. Duryea, P. Kostenuik, U. Feige, and D. Zack. 2008. The evolving systemic and local biomarker milieu at different stages of disease progression in rat collagen-induced arthritis. Biomarkers 13: 692–712.

    Article  CAS  PubMed  Google Scholar 

  29. Stolina, M., B. Bolon, S. Middleton, D. Dwyer, H. Brown, D. Duryea, L. Zhu, A. Rohner, J. Pretorius, P. Kostenuik, et al. 2009. The evolving systemic and local biomarker milieu at different stages of disease progression in rat adjuvant-induced arthritis. Journal of Clinical Immunology 29: 158–174.

    Article  CAS  PubMed  Google Scholar 

  30. Szekanecz, Z., M. Halloran, M. Volin, J. Woods, R. Strieter, K. Haines 3rd, S. Kunkel, M. Burdick, and A. Koch. 2000. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis. Arthritis & Rheumatism 43: 1266–1277.

    Article  CAS  Google Scholar 

  31. Dias, M., D. Newton, G. McLeod, F. Khan, and J. Belch. 2008. The inhibitory effects of local anaesthetics on the vascular flare responses to bradykinin and substance P in human skin. Anaesthesia 63: 151–155.

    Article  CAS  PubMed  Google Scholar 

  32. Uematsu, T., A. Sakai, H. Ito, and H. Suzuki. 2011. Intra-articular administration of tachykinin NK1 receptor antagonists reduces hyperalgesia and cartilage destruction in the inflammatory joint in rats with adjuvant-induced arthritis. European Journal of Pharmacology 668: 163–168.

    Article  CAS  PubMed  Google Scholar 

  33. Hill, R. 2000. NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends in Pharmacological Sciences 21: 244–246.

    Article  CAS  PubMed  Google Scholar 

  34. Appell, K., B. Fragale, J. Loscig, S. Singh, and B. Tomczuk. 1992. Antagonists that demonstrate species differences in neurokinin-1 receptors. Molecular Pharmacology 41: 772–778.

    CAS  PubMed  Google Scholar 

  35. Borbe, E., Z. Hajna, K. Sandor, L. Kereskai, I. Toth, and E. Pinter. 2013. Role of tachykinin 1 and 4 gene-derived neuropeptides and the neurokinin 1 receptor in adjuvant-induced chronic arthritis of the mouse. PLOS ONE 8(4): e61684.

    Article  Google Scholar 

  36. Peck, S., R. Johnston Jr., and L. Horwitz. 1985. Reduced neutrophil superoxide anion release after prolonged infusions of lidocaine. Journal of Pharmacology and Experimental Therapeutics 235: 418–422.

    CAS  PubMed  Google Scholar 

  37. Cullen, B., and R. Haschke. 1974. Local anesthetic inhibition of phagocytosis and metabolism of human leukocytes. Anesthesiology 40: 142–146.

    Article  CAS  PubMed  Google Scholar 

  38. Cesar, H., and P. Marques. 2009. The use of lidocaine as an anti-inflammatory substance: a systematic review. Journal of Dentistry 37: 93–97.

    Article  Google Scholar 

  39. Scott, D., A. Lee, D. Fagan, G. Bowler, P. Bloomfield, and R. Lundh. 1989. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesthesia & Analgesia 69: 563–569.

    CAS  Google Scholar 

  40. Tucker, G., R. Boyes, P. Bridenbaugh, and D. Moore. 1970. Binding of anilide-type local anesthetics in human plasma: I. Relationships between binding, physicochemical properties, and anesthetic activity. Anesthesiology 33: 287.

    Article  CAS  PubMed  Google Scholar 

  41. Meunier, J., E. Goujard, A. Dubousset, K. Samii, and J. Mazoit. 2001. Pharmacokinetics of bupivacaine after continuous epidural infusion in infants with and without biliary atresia. Anesthesiology 95: 87.

    Article  CAS  PubMed  Google Scholar 

  42. Brunton, L.L. (ed.). 2006. Goodman & Gilman’s the pharmacological basis of therapeutics, 11th ed. New York: McGraw-Hill.

    Google Scholar 

  43. Chaplan, S., F. Bach, S. Shafer, and T. Yaksh. 1995. Prolonged alleviation of tactile allodynia by intravenous lidocaine in neuropathic rats. Anesthesiology 83: 775–785.

    Article  CAS  PubMed  Google Scholar 

  44. Arnér, S., U. Lindblom, B. Meyerson, and C. Molander. 1990. Prolonged relief of neuralgia after regional anesthetic blocks. A call for further experimental and systematic clinical studies. Pain 43: 287–297.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrett Rabinow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinow, B., Werling, J., Bendele, A. et al. Intra-articular (IA) Ropivacaine Microparticle Suspensions Reduce Pain, Inflammation, Cytokine, and Substance P Levels Significantly More than Oral or IA Celecoxib in a Rat Model of Arthritis. Inflammation 38, 40–60 (2015). https://doi.org/10.1007/s10753-014-0006-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0006-z

KEY WORDS

Navigation