, Volume 37, Issue 2, pp 566–572 | Cite as

1,8-Cineol Attenuates LPS-Induced Acute Pulmonary Inflammation in Mice

  • Chunzhen Zhao
  • Jianbo Sun
  • Chunyan Fang
  • Fadi Tang


Eucalyptol, also known as 1,8-cineol, is a monoterpene and has been shown to exert anti-inflammatory and antioxidant effect. It is traditionally used to treat respiratory disorders due to its secretolytic properties. In the present study, we evaluated the effect of 1,8-cineol on pulmonary inflammation in a mouse model of acute lung injury. We found that 1,8-cineol significantly decreased the level of TNF-α and IL-1β, and increased the level of IL-10 in lung tissues after acute lung injury induced by lipopolysaccharide (LPS). It also reduced the expression of nuclear factor kappa B (NF-κB) p65 and toll-like receptor 4 (TLR4), and myeloperoxidase activity in lung tissues. In addition, 1,8-cineol reduced the amounts of inflammatory cells in bronchoalveolar lavage fluid (BALF), including neutrophils and macrophages, and significantly decreased the protein content in BALF and the lung wet/dry weight (W/D) ratio. Its effect on LPS-induced pulmonary inflammation was associated with suppression of TLR4 and NF-κB expressions. Our results provide evidence that 1,8-cineol inhibits acute pulmonary inflammation, indicating its potential for the treatment of acute lung injury.


1,8-cineol lipopolysaccharide inflammation acute lung injury 


  1. 1.
    Kor, D.J., D.S. Talmor, V.M. Banner-Goodspeed, R.E. Carter, R. Hinds, P.K. Park, O. Gajic, and M.N. Gong. 2012. Lung injury prevention with aspirin (LIPS-A): a protocol for a multicentre randomised clinical trial in medical patients at high risk of acute lung injury. BMJ Open 2.Google Scholar
  2. 2.
    Herridge, M.S., and D.C. Angus. 2005. Acute lung injury—affecting many lives. The New England Journal of Medicine 353: 1736–1738.PubMedCrossRefGoogle Scholar
  3. 3.
    Suda, K., M. Tsuruta, J. Eom, C. Or, T. Mui, J.E. Jaw, Y. Li, N. Bai, J. Kim, J. Man, D. Ngan, J. Lee, S. Hansen, S.W. Lee, S. Tam, S.P. Man, S. Van Eeden, and D.D. Sin. 2011. Acute lung injury induces cardiovascular dysfunction: effects of IL-6 and budesonide/formoterol. American Journal of Respiratory Cell and Molecular Biology 45: 510–516.PubMedCrossRefGoogle Scholar
  4. 4.
    Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology 295: L379–L399.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Beduschi, M.G., C.L. Guimaraes, Z.S. Buss, and E.M. Dalmarco. 2013. Mycophenolate mofetil has potent anti-inflammatory actions in a mouse model of acute lung injury. Inflammation 36: 729–737.PubMedCrossRefGoogle Scholar
  6. 6.
    Mu, E., R. Ding, X. An, X. Li, S. Chen, and X. Ma. 2012. Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thrombosis Research 129: 479–485.PubMedCrossRefGoogle Scholar
  7. 7.
    Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353: 1685–1693.PubMedCrossRefGoogle Scholar
  8. 8.
    Ait-Ouazzou, A., S. Loran, M. Bakkali, A. Laglaoui, C. Rota, A. Herrera, R. Pagan, and P. Conchello. 2011. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. Journal of the Science of Food and Agriculture 91: 2643–2651.PubMedCrossRefGoogle Scholar
  9. 9.
    Lima, P.R., T.S. de Melo, K.M. Carvalho, I.B. de Oliveira, B.R. Arruda, G.A. de Castro Brito, V.S. Rao, and F.A. Santos. 2013. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-kappaB activity in mice. Life Sciences 92: 1195–1201.PubMedCrossRefGoogle Scholar
  10. 10.
    Santos, F.A., R.M. Silva, A.R. Campos, R.P. De Araujo, R.C. Lima Junior, and V.S. Rao. 2004. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food and Chemical Toxicology 42: 579–584.PubMedCrossRefGoogle Scholar
  11. 11.
    Cho, K.H. 2012. 1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish. BMB Reports 45: 565–570.PubMedCrossRefGoogle Scholar
  12. 12.
    Juergens, U.R., U. Dethlefsen, G. Steinkamp, A. Gillissen, R. Repges, and H. Vetter. 2003. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respiratory Medicine 97: 250–256.PubMedCrossRefGoogle Scholar
  13. 13.
    Juergens, U.R., M. Stober, and H. Vetter. 1998. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. European Journal of Medical Research 3: 508–510.PubMedGoogle Scholar
  14. 14.
    Worth, H., C. Schacher, and U. Dethlefsen. 2009. Concomitant therapy with cineole (eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respiratory Research 10: 69.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Shafeeq, H., and I. Lat. 2012. Pharmacotherapy for acute respiratory distress syndrome. Pharmacotherapy 32(10): 943–957.PubMedCrossRefGoogle Scholar
  16. 16.
    El-Agamy, D.S. 2011. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats. Toxicology and Applied Pharmacology 2011(253): 153–160.CrossRefGoogle Scholar
  17. 17.
    Tauseef, M., N. Knezevic, K.R. Chava, M. Smith, S. Sukriti, N. Gianaris, A.G. Obukhov, S.M. Vogel, D.E. Schraufnagel, A. Dietrich, L. Birnbaumer, A.B. Malik, and D. Mehta. 2012. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. The Journal of Experimental Medicine 209: 1953–1968.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zhou, X., Q. Dai, and X. Huang. 2012. Neutrophils in acute lung injury. Frontiers in Bioscience (Landmark Ed) 17: 2278–2283.CrossRefGoogle Scholar
  19. 19.
    Borregaard, N., O.E. Sorensen, and K. Theilgaard-Monch. 2007. Neutrophil granules: a library of innate immunity proteins. Trends in Immunology 28: 340–345.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou, J.Y., X.F. Wang, F.D. Tang, G.H. Lu, Y. Wang, and R.L. Bian. 2007. Inhibitory effect of 1,8-cineol (eucalyptol) on Egr-1 expression in lipopolysaccharide-stimulated THP-1 cells. Acta Pharmacologica Sinica 28: 908–912.PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan, X., Y. Wang, D. Du, Z. Hu, M. Xu, and Z. Liu. 2012. The effects of the combination of sodium ferulate and oxymatrine on lipopolysaccharide-induced acute lung injury in mice. Inflammation 35: 1161–1168.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang, H., P. Neuhöfer, L. Song, B. Rabe, M. Lesina, M.U. Kurkowski, M. Treiber, T. Wartmann, S. Regnér, H. Thorlacius, D. Saur, G. Weirich, A. Yoshimura, W. Halangk, J.P. Mizgerd, R.M. Schmid, S. Rose-John, and H. Algül. 2013. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. The Journal of Clinical Investigation 123: 1019–1031.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Juergens, U.R., T. Engelen, K. Racke, M. Stober, A. Gillissen, and H. Vetter. 2004. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulmonary Pharmacology & Therapeutics 17: 281–287.CrossRefGoogle Scholar
  24. 24.
    Saraiva, M., and A. O’Garra. 2010. The regulation of IL-10 production by immune cells. Nature Reviews Immunology 10: 170–181.PubMedCrossRefGoogle Scholar
  25. 25.
    Xie, G., N. Chen, L.W. Soromou, F. Liu, Y. Xiong, Q. Wu, H. Li, H. Feng, and G. Liu. 2012. p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules 17: 8159–8173.PubMedCrossRefGoogle Scholar
  26. 26.
    Joh, E.H., W. Gu, and D.H. Kim. 2012. Echinocystic acid ameliorates lung inflammation in mice and alveolar macrophages by inhibiting the binding of LPS to TLR4 in NF-kappaB and MAPK pathways. Biochemical Pharmacology 84: 331–340.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chunzhen Zhao
    • 1
  • Jianbo Sun
    • 2
  • Chunyan Fang
    • 1
  • Fadi Tang
    • 3
  1. 1.Department of Pharmacology, Pharmacy and Biological Science CollegeWeifang Medical UniversityWeifangChina
  2. 2.Department of NeurosurgeryShouguang People’s HospitalShouguangChina
  3. 3.Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations