, Volume 37, Issue 1, pp 205–213 | Cite as

Effects of OX40–OX40L Interaction on the Nuclear Factor of Activated T Cells c1 in ApoE-Deficient Mice

  • Jin-chuan Yan
  • Liang-jie Xu
  • Cui-ping Wang
  • Zhong-qun Wang


We previously reported the emerging role of OX40–OX40L interaction in inflammation and atherosclerosis. However, the mechanism by which OX40–OX40L interaction contributes to pathogenesis is poorly understood. This study investigated the effects of OX40–OX40L interaction on the nuclear factor of activated T cells c1 (NFATc1) in ApoE−/− mice. Atherosclerotic plaque was induced via rapid perivascular carotid collar placement in ApoE−/− mice. The expression levels of OX40, OX40L, and NFATc1 in the lymphocytes were measured via real-time polymerase chain reaction and flow cytometry. The presence of NFATc1 in the atherosclerotic plaque was detected via immunohistochemistry, and the level of IL-4 was measured via enzyme-linked immunosorbent assay. The expression level of NFATc1 significantly increased in atherosclerotic lesion and in the leukocytes from the ApoE−/− mice. After stimulating OX40–OX40L interaction, the mRNA and protein expression levels of NFATc1 in the lymphocytes significantly increased. Meanwhile, anti-OX40LmAb significantly suppressed the expression of NFATc1 in the leukocytes and substantially elevated the level of IL-4. NFATc1 inhibitor markedly suppressed IL-4 production. This study suggests that OX40–OX40L interaction regulates the expression of NFATc1, which may play a critical role in atherosclerotic plaque formation, and may therefore have implications with pathophysiology of atherosclerosis.


OX40 0X40 ligand NFATc1 atherosclerosis 



This project was supported by the Natural Science Foundation of Jiangsu Province, China (BK2011486, LJ201116) and the National Natural Science Foundation of China (81170279, 81370409) and Key Laboratory of Cardiovascular Disease of Zhenjiang (SS2012002).


  1. 1.
    Gotsman, I., A.H. Sharpe, and A.H. Lichtman. 2008. T-cell costimulation and coinhibition in atherosclerosis. Circ Res 103: 1220–1231.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Van Wanrooij, E.J., G.H. van Puijvelde, P. de Vos, H. Yagita, T.J. van Berkel, and J. Kuiper. 2007. Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 27: 204–210.PubMedCrossRefGoogle Scholar
  3. 3.
    Hogan, P.G., L. Chen, J. Nardone, and A. Rao. 2003. Transcriptional regulation by calcium calcineurin, and NFAT. Genes Dev 17: 2205–2232.PubMedCrossRefGoogle Scholar
  4. 4.
    Macian, F. 2005. NFAT proteins: Key regulators of T-cell development and function. Nat Rev Immunol 5: 472–484.PubMedCrossRefGoogle Scholar
  5. 5.
    Macian, F., C. Garcia-Rodriguez, and A. Rao. 2000. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J 19: 4783–4795.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    de la Pompa, J.L., L.A. Timmerman, H. Takimoto, H. Yoshida, A.J. Elia, E. Samper, J. Potter, A. Wakeham, L. Marengere, B.L. Langille, G.R. Crabtree, and T.W. Mak. 1998. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392: 182–186.PubMedCrossRefGoogle Scholar
  7. 7.
    Ranger, A.M., M.J. Grusby, M.R. Hodge, E.M. Gravallese, F.C. de la Brousse, T. Hoey, C. Mickanin, H.S. Baldwin, and L.H. Glimcher. 1998. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392: 186–190.PubMedCrossRefGoogle Scholar
  8. 8.
    Sieber, M., and R. Baumgrass. 2009. Novel inhibitors of the calcineurin/NFATc hub—Alternatives to CsA and FK506. Cell Commun Signal 7: 25.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Karpurapu, M., D. Wang, N.K. Singh, Q. Li, and G.N. Rao. 2008. NFATc1 targets cyclin A in the regulation of vascular smooth muscle cell multiplication during restenosis. J Biol Chem 283: 26577–26590.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Croft, M. 2003. Co-stimulatory members of the TNFR family: Keys to effective T-cell immunity? Nat Rev Immuno 3: 609–620.CrossRefGoogle Scholar
  11. 11.
    Watts, T.H. 2005. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23: 23–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Sugamura, K., N. Ishii, and A.D. Weinberg. 2004. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol 4: 420–431.PubMedCrossRefGoogle Scholar
  13. 13.
    Monticelli, S., and A. Rao. 2002. NFAT1 and NFAT2 are positive regulators of IL-4 gene transcription. Eur J Immunol 32: 2971–2978.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, D.M., J.C. Yan, C.P. Wang, G.H. Chen, S. Ding, P.J. Liu, and R.Z. Du. 2008. The clinical implications of increased OX40 ligand expression in patients with acute coronary syndrome. Clin Chim Acta 397: 22–26.PubMedCrossRefGoogle Scholar
  15. 15.
    von der Thusen, J.H., T.J. van Berkel, and E.A. Biessen. 2001. Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103: 1164–1170.PubMedCrossRefGoogle Scholar
  16. 16.
    Takeda, I., S. Ine, N. Killeen, L.C. Ndhlovu, K. Murata, S. Satomi, K. Sugamura, and N. Ishii. 2004. Distinct roles for the OX40–OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 172: 3580–3589.PubMedCrossRefGoogle Scholar
  17. 17.
    Peng, D.Q., S. Huang, S.G. Yuan, and S.P. Zhao. 2010. Increased soluble OX40L is associated with carotid intima-media thickness. Clin Lab 56: 449–457.PubMedGoogle Scholar
  18. 18.
    Nakano, M., Y. Fukumoto, K. Satoh, Y. Ito, Y. Kagaya, N. Ishii, K. Sugamura, and H. Shimokawa. 2010. OX40 ligand plays an important role in the development of atherosclerosis through vasa vasorum neovascularization. Cardiovasc Res 88: 539–546.PubMedCrossRefGoogle Scholar
  19. 19.
    Yan, J., C. Wang, R. Du, P. Liu, and G. Chen. 2009. OX40–OX40L ligand interaction may activate phospholipase C signal transduction pathway in human umbilical vein endothelial cells. Chem Biol Interact 180: 460–464.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, M.S., and Y.M. Usachev. 2009. Mitochondrial Ca2+ cycling facilitates activation of the transcription factor NFAT in sensory neurons. J Neurosci 29: 12101–12114.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jin-chuan Yan
    • 1
  • Liang-jie Xu
    • 1
  • Cui-ping Wang
    • 1
  • Zhong-qun Wang
    • 1
  1. 1.Department of CardiologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations