Advertisement

Inflammation

, Volume 37, Issue 1, pp 142–145 | Cite as

Neuropeptide Downregulation in Sepsis

  • Fabiano Pinheiro da Silva
  • Marcel Cerqueira César Machado
  • Paulo Clemente Sallet
  • Fernando Godinho Zampieri
  • Alessandra Carvalho Goulart
  • Francisco Torggler Filho
  • Hermes Vieira Barbeiro
  • Irineu Tadeu Velasco
  • Luiz Monteiro da Cruz Neto
  • Heraldo Possolo de Souza
Article

Abstract

Neuropeptides are an extremely conserved arm of neurobiology. Despite their effects as neurohormones and neurotransmitters, a multitude of other effects have been described, putting in evidence their importance as regulators of immune responses, such as chemotaxis, oxidative burst, pro-inflammatory signaling, and many others. The effects of neuropeptides in the pathophysiology of sepsis, however, remain poorly investigated. A prospective cohort study to investigate the effects of neuropeptides in sepsis was carried out. Here, we describe that neuropeptides are downregulated during septic shock. We propose that it may be a protective mechanism of the host to avoid further inflammatory injury.

KEY WORDS

inflammation neuropeptides sepsis 

Notes

Acknowledgments

The authors have no financial or ethical conflicts of interest. FPS is supported by FAPESP, São Paulo Research Foundation (grant no. 2009/17731-2).

References

  1. 1.
    van den Pol, A.N. 2012. Neuropeptide transmission in brain circuits. Neuron 76: 98–115.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bone, R.C., R.A. Balk, F.B. Cerra, R.P. Dellinger, A.M. Fein, W.A. Knaus, R.M. Schein, and W.J. Sibbald. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101: 1644–1655.PubMedCrossRefGoogle Scholar
  3. 3.
    Augustyniak, D., J. Nowak, and F.T. Lundy. 2012. Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Current Protein & Peptide Science 13: 723–738.CrossRefGoogle Scholar
  4. 4.
    Ang, S.F., S.M. Moochhala, P.A. MacAry, and M. Bhatia. 2011. Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: Involvement of substance P and ERK-NF-kappaB signaling. PLoS One 6: e24535.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Doi, K., X. Hu, P.S. Yuen, A. Leelahavanichkul, H. Yasuda, S.M. Kim, J. Schnermann, T.E. Jonassen, J. Frokiaer, S. Nielsen, and R.A. Star. 2008. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney International 73: 1266–1274.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Oliveira-Pelegrin, G.R., F.A. Aguila, P.J. Basso, and M.J. Rocha. 2010. Role of central NO-cGMP pathway in vasopressin and oxytocin gene expression during sepsis. Peptides 31: 1847–1852.PubMedCrossRefGoogle Scholar
  7. 7.
    Piliponsky, A.M., C.C. Chen, T. Nishimura, M. Metz, E.J. Rios, P.R. Dobner, E. Wada, K. Wada, S. Zacharias, U.M. Mohanasundaram, J.D. Faix, M. Abrink, G. Pejler, R.G. Pearl, M. Tsai, and S.J. Galli. 2008. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nature Medicine 14: 392–398.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Srinivasan, V., M. Mohamed, and H. Kato. 2012. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 6: 30–39.CrossRefGoogle Scholar
  9. 9.
    Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.PubMedCrossRefGoogle Scholar
  10. 10.
    Grimmelikhuijzen, C.J., and F. Hauser. 2012. Mini-review: The evolution of Neuropeptide signaling. Regulatory Peptides 177(Suppl): S6–S9.PubMedCrossRefGoogle Scholar
  11. 11.
    Barbeiro, D.F., H.V. Barbeiro, F.G. Zampieri, M.C. Cesar Machado, F. Torggler Filho, D.M. Gomes Cunha, A.C. Goulart, I.T. Velasco, L. Monteiro da Cruz Neto, H. Possolo de Souza, and F. Pinheiro da Silva. 2013. Cathelicidin LL-37 bloodstream surveillance is down regulated during septic shock. Microbes and Infection/Institut Pasteur 15(5): 342–346. doi: 10.1016/j.micinf.2013.01.001.PubMedCrossRefGoogle Scholar
  12. 12.
    Adam, N., S. Kandelman, J. Mantz, F. Chretien, and T. Sharshar. 2013. Sepsis-induced brain dysfunction. Expert Review of Anti-Infective Therapy 11: 211–221.PubMedCrossRefGoogle Scholar
  13. 13.
    Ebersoldt, M., T. Sharshar, and D. Annane. 2007. Sepsis-associated delirium. Intensive Care Medicine 33: 941–950.PubMedCrossRefGoogle Scholar
  14. 14.
    Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fabiano Pinheiro da Silva
    • 1
  • Marcel Cerqueira César Machado
    • 1
  • Paulo Clemente Sallet
    • 2
  • Fernando Godinho Zampieri
    • 1
  • Alessandra Carvalho Goulart
    • 3
  • Francisco Torggler Filho
    • 1
  • Hermes Vieira Barbeiro
    • 1
  • Irineu Tadeu Velasco
    • 1
  • Luiz Monteiro da Cruz Neto
    • 1
  • Heraldo Possolo de Souza
    • 1
  1. 1.Emergency Medicine DepartmentUniversity of São PauloSão PauloBrazil
  2. 2.Psychiatry InstituteUniversity of Sao PauloSão PauloBrazil
  3. 3.Center for Clinical Research, Hospital UniversitárioUniversity of Sao PauloSão PauloBrazil

Personalised recommendations