Advertisement

Inflammation

, Volume 36, Issue 6, pp 1584–1591 | Cite as

Anti-inflammatory Activity of Baicalein in LPS-Stimulated RAW264.7 Macrophages via Estrogen Receptor and NF-κB-Dependent Pathways

  • Guan-Wei Fan
  • Yuan Zhang
  • Xiaorui Jiang
  • Yan Zhu
  • Bingyao Wang
  • Lina Su
  • Wenjie Cao
  • Han Zhang
  • Xiumei Gao
Article

Abstract

Baicalein has been used for many years as a popular antiviral and antibacterial in China. Recent investigations revealed that baicalein also has anti-inflammatory activities. Our results indicated that baicalein increases ERE-luciferase activity in an estrogen receptor (ER)-dependent manner when either ERα or ERβ were coexpressed in Hela cells. This study examined whether baicalein exerts an anti-inflammatory effect in RAW264.7 cells through an estrogen receptor-dependent pathway and through regulation of NF-ĸB activation. In lipopolysaccharide (LPS)-induced RAW264.7 cells, baicalein exerts anti-inflammatory effects by inhibiting iNOS, COX-2, and TNF-α mRNA expression; NO production; as well as inflammatory cytokine (IL-1β, PGE2, and TNF-α) production through an ER-dependent pathway. These effects are accompanied with the inhibition of the transcription factor NF-ĸB activation and IκBα phosphorylation. We therefore conclude that baicalein inhibits LPS-induced inflammatory cytokine production via regulation of the NF-ĸB pathway and estrogen-like activity, suggesting that it may be useful for preventing inflammation-related diseases.

KEY WORDS

baicalein estrogen-like activity phytoestrogen NF-kB RAW264.7 cells inflammation 

Notes

Acknowledgments

We are grateful for the financial support from the National Key Basic Research Program of China (2012CB518400), the National Natural Science Foundation of China (81001659, 81273891), National Science Fund for Distinguished Young Scholars (81125024), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1276), and Technology major projects (2012ZX09103201-046).

Conflict of interest

The authors declared that there is no conflict of interest.

References

  1. 1.
    Lagari, V.S., and S. Levis. 2010. Phytoestrogens and bone health. Current Opinion in Endocrinology, Diabetes, and Obesity 17: 546–553.PubMedCrossRefGoogle Scholar
  2. 2.
    Fan, G.W., X.M. Gao, H. Wang, Y. Zhu, J. Zhang, L.M. Hu, Y.F. Su, L.Y. Kang, and B.L. Zhang. 2009. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. The Journal of Steroid Biochemistry and Molecular Biology 113: 275–280.PubMedCrossRefGoogle Scholar
  3. 3.
    Xin, D., H. Wang, J. Yang, Y.F. Su, G.W. Fan, Y.F. Wang, Y. Zhu, and X.M. Gao. 2010. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine 17: 126–131.PubMedCrossRefGoogle Scholar
  4. 4.
    Rossol, M., H. Heine, U. Meusch, D. Quandt, C. Klein, M.J. Sweet, and S. Hauschildt. 2011. LPS-induced cytokine production in human monocytes and macrophages. Critical Reviews in Immunology 31: 379–446.PubMedCrossRefGoogle Scholar
  5. 5.
    Heine, H., E.T. Rietschel, and A.J. Ulmer. 2001. The biology of endotoxin. Molecular Biotechnology 19: 279–296.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.PubMedCrossRefGoogle Scholar
  7. 7.
    Watanabe, K., K. Jinnouchi, A. Hess, O. Michel, and T. Yagi. 2001. Detection of apoptotic change in the lipopolysaccharide (LPS)-treated cochlea of guinea pigs. Hearing Research 158: 116–122.PubMedCrossRefGoogle Scholar
  8. 8.
    DiDonato, J.A., F. Mercurio, and M. Karin. 2012. NF-kappaB and the link between inflammation and cancer. Immunological Reviews 246: 379–400.PubMedCrossRefGoogle Scholar
  9. 9.
    Christman, J.W., L.H. Lancaster, and T.S. Blackwell. 1998. Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intensive Care Medicine 24: 1131–1138.PubMedCrossRefGoogle Scholar
  10. 10.
    Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8: 837–848.PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards, M.R., N.W. Bartlett, D. Clarke, M. Birrell, M. Belvisi, and S.L. Johnston. 2009. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology and Therapeutics 121: 1–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong, E.T., and V. Tergaonkar. 2009. Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clinical Science (London, England) 116: 451–465.CrossRefGoogle Scholar
  13. 13.
    Lin, C.C., and D.E. Shieh. 1996. The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. The American Journal of Chinese Medicine 24: 31–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Wakabayashi, I. 1999. Inhibitory effects of baicalein and wogonin on lipopolysaccharide-induced nitric oxide production in macrophages. Pharmacology and Toxicology 84: 288–291.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng, P.Y., Y.M. Lee, Y.S. Wu, T.W. Chang, J.S. Jin, and M.H. Yen. 2007. Protective effect of baicalein against endotoxic shock in rats in vivo and in vitro. Biochemical Pharmacology 73: 793–804.PubMedCrossRefGoogle Scholar
  16. 16.
    Woo, K.J., J.H. Lim, S.I. Suh, Y.K. Kwon, S.W. Shin, S.C. Kim, Y.H. Choi, J.W. Park, and T.K. Kwon. 2006. Differential inhibitory effects of baicalein and baicalin on LPS-induced cyclooxygenase-2 expression through inhibition of C/EBPbeta DNA-binding activity. Immunobiology 211: 359–368.PubMedCrossRefGoogle Scholar
  17. 17.
    Singh, A.K., R. Singh, F. Naz, S.S. Chauhan, A. Dinda, A.A. Shukla, K. Gill, V. Kapoor, and S. Dey. 2012. Structure based design and synthesis of peptide inhibitor of human LOX-12: in vitro and in vivo analysis of a novel therapeutic agent for breast cancer. PloS One 7: e32521.PubMedCrossRefGoogle Scholar
  18. 18.
    Chakrabarti, S., O. Lekontseva, and S.T. Davidge. 2008. Estrogen is a modulator of vascular inflammation. IUBMB Life 60: 376–382.PubMedCrossRefGoogle Scholar
  19. 19.
    Ji, G., Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang. 2012. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-kappaB following AMP kinase activation in RAW 264.7 macrophages. PloS One 7: e53101.PubMedCrossRefGoogle Scholar
  20. 20.
    Hao, J., F.-D. Shi, M. Abdelwahab, S.X. Shi, A. Simard, P. Whiteaker, R. Lukas, and Q. Zhou. 2013. Nicotinic receptor beta2 determines NK cell-dependent metastasis in a murine model of metastatic lung cancer. PloS One 8: e57495–e57495.PubMedCrossRefGoogle Scholar
  21. 21.
    Shao, Z.H., T.L. Vanden Hoek, Y. Qin, L.B. Becker, P.T. Schumacker, C.Q. Li, L. Dey, E. Barth, H. Halpern, G.M. Rosen, and C.S. Yuan. 2002. Baicalein attenuates oxidant stress in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology 282: H999–H1006.PubMedGoogle Scholar
  22. 22.
    Hsieh, C.J., K. Hall, T. Ha, C. Li, G. Krishnaswamy, and D.S. Chi. 2007. Baicalein inhibits IL-1beta- and TNF-alpha-induced inflammatory cytokine production from human mast cells via regulation of the NF-kappaB pathway. Clinical and Molecular Allergy : CMA 5: 5.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang, L.P., H.L. Sun, L.M. Wu, X.J. Guo, H.L. Dou, M.O. Tso, L. Zhao, and S.M. Li. 2009. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Investigative Ophthalmology and Visual Science 50: 2319–2327.PubMedCrossRefGoogle Scholar
  24. 24.
    Pettersson, K., and J.A. Gustafsson. 2001. Role of estrogen receptor beta in estrogen action. Annual Review of Physiology 63: 165–192.PubMedCrossRefGoogle Scholar
  25. 25.
    Jobin, C., C.A. Bradham, M.P. Russo, B. Juma, A.S. Narula, D.A. Brenner, and R.B. Sartor. 1999. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. The Journal of Immunology 163: 3474–3483.PubMedGoogle Scholar
  26. 26.
    Chi, D.S., T.C. Lin, K. Hall, T. Ha, C. Li, Z.D. Wu, T. Soike, and G. Krishnaswamy. 2012. Enhanced effects of cigarette smoke extract on inflammatory cytokine expression in IL-1beta-activated human mast cells were inhibited by baicalein via regulation of the NF-kappaB pathway. Clinical and Molecular Allergy : CMA 10: 3.PubMedCrossRefGoogle Scholar
  27. 27.
    Bremner, P., and M. Heinrich. 2002. Natural products as targeted modulators of the nuclear factor-kappaB pathway. The Journal of Pharmacy and Pharmacology 54: 453–472.PubMedCrossRefGoogle Scholar
  28. 28.
    Kasinski, A.L., Y. Du, S.L. Thomas, J. Zhao, S.Y. Sun, F.R. Khuri, C.Y. Wang, M. Shoji, A. Sun, J.P. Snyder, D. Liotta, and H. Fu. 2008. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Molecular Pharmacology 74: 654–661.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim, B.H., E. Roh, H.Y. Lee, I.J. Lee, B. Ahn, S.H. Jung, H. Lee, S.B. Han, and Y. Kim. 2008. Benzoxathiole derivative blocks lipopolysaccharide-induced nuclear factor-kappaB activation and nuclear factor-kappaB-regulated gene transcription through inactivating inhibitory kappaB kinase beta. Molecular Pharmacology 73: 1309–1318.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guan-Wei Fan
    • 1
    • 2
    • 3
  • Yuan Zhang
    • 1
    • 2
    • 3
  • Xiaorui Jiang
    • 1
    • 2
    • 3
  • Yan Zhu
    • 1
    • 2
    • 3
  • Bingyao Wang
    • 1
    • 2
    • 3
  • Lina Su
    • 1
    • 2
    • 3
  • Wenjie Cao
    • 1
    • 2
    • 3
  • Han Zhang
    • 1
    • 2
    • 3
  • Xiumei Gao
    • 1
    • 2
    • 3
    • 4
  1. 1.State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
  2. 2.Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
  3. 3.Institute of Traditional Chinese Medicine ResearchTianjin University of Traditional Chinese MedicineTianjinChina
  4. 4.State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations