, Volume 35, Issue 6, pp 1825–1832 | Cite as

Heparin Rescues Sepsis-Associated Acute Lung Injury and Lethality Through the Suppression of Inflammatory Responses

  • Dongmei Zhao
  • Renyu Ding
  • Yiran Mao
  • Liang Wang
  • Zhidan Zhang
  • Xiaochun Ma


Heparin, a potent blood anticoagulant, is known to possess anti-inflammatory activity. In this work, we investigated whether heparin can ameliorate acute lung injury and lethal response in lipopolysaccharide (LPS)-induced mouse model of sepsis. We found that heparin effectively rescued lethality, improved lung pathological changes, inhibited myeloperoxidase (MPO) activity, and reduced malondialdehyde (MDA) level, lung wet/dry weight ratio and Evans blue values in LPS-induced septic mice. In addition, heparin also inhibited the release of tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and IL-1β in serum and decreased the expression of p-p38, nuclear factor κB (NF-κB) and p-c-SRC kinase in lungs of septic mice. Our findings suggest that heparin is capable of suppressing the lethal response and acute lung injury associated with sepsis, and support the notion that heparin may be a potential therapeutic agent for the conditions associated with septic shock.


sepsis heparin acute lung injury mortality cytokines 


  1. 1.
    Russell, J.A. 2006. Management of sepsis. The New England Journal of Medicine 355(16): 1699–1713. doi: 10.1056/NEJMra043632.PubMedCrossRefGoogle Scholar
  2. 2.
    Fry, D.E. 2012. Sepsis, systemic inflammatory response, and multiple organ dysfunction: The mystery continues. The American Surgeon 78(1): 1–8.PubMedGoogle Scholar
  3. 3.
    Dombrovskiy, V.Y., A.A. Martin, J. Sunderram, and H.L. Paz. 2007. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: A trend analysis from 1993 to 2003. Critical Care Medicine 35(5): 1244–1250. doi: 10.1097/01.CCM.0000261890.41311.E9.PubMedCrossRefGoogle Scholar
  4. 4.
    Netea, M.G., J.W. van der Meer, M. van Deuren, and B.J. Kullberg. 2003. Proinflammatory cytokines and sepsis syndrome: Not enough, or too much of a good thing? Trends in Immunology 24(5): 254–258.PubMedCrossRefGoogle Scholar
  5. 5.
    Abraham, E., A. Carmody, R. Shenkar, and J. Arcaroli. 2000. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 279(6): L1137–L1145.PubMedGoogle Scholar
  6. 6.
    Silva, E., J. Arcaroli, Q. He, D. Svetkauskaite, C. Coldren, J.A. Nick, K. Poch, J.S. Park, A. Banerjee, and E. Abraham. 2007. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Medicine 33(10): 1829–1839. doi: 10.1007/s00134-007-0748-2.PubMedCrossRefGoogle Scholar
  7. 7.
    Lever, R., and C.P. Page. 2002. Novel drug development opportunities for heparin. Nature Reviews. Drug Discovery 1(2): 140–148. doi: 10.1038/nrd724.PubMedCrossRefGoogle Scholar
  8. 8.
    Hirsh, J., S.S. Anand, J.L. Halperin, and V. Fuster. 2001. Guide to anticoagulant therapy: Heparin: A statement for healthcare professionals from the American Heart Association. Circulation 103(24): 2994–3018.PubMedCrossRefGoogle Scholar
  9. 9.
    Baglin, T., T.W. Barrowcliffe, A. Cohen, and M. Greaves. 2006. Guidelines on the use and monitoring of heparin. British Journal of Haematology 133(1): 19–34. doi: 10.1111/j.1365-2141.2005.05953.x.PubMedCrossRefGoogle Scholar
  10. 10.
    Young, E. 2008. The anti-inflammatory effects of heparin and related compounds. Thrombosis Research 122(6): 743–752. doi: 10.1016/j.thromres.2006.10.026.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, M., J. He, B. Mei, X. Ma, and Z. Huo. 2008. Therapeutic effects and anti-inflammatory mechanisms of heparin on acute lung injury in rabbits. Academic Emergency Medicine 15(7): 656–663.PubMedCrossRefGoogle Scholar
  12. 12.
    Mu, E., R. Ding, X. An, X. Li, S. Chen, and X. Ma. 2012. Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thrombosis Research 129(4): 479–485. doi: 10.1016/j.thromres.2011.10.003.PubMedCrossRefGoogle Scholar
  13. 13.
    Weng, T.I., H.Y. Wu, C.W. Kuo, and S.H. Liu. 2011. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Medicine 37(3): 533–541. doi: 10.1007/s00134-010-2104-1.PubMedCrossRefGoogle Scholar
  14. 14.
    Parikh, S.M., T. Mammoto, A. Schultz, H.T. Yuan, D. Christiani, S.A. Karumanchi, and V.P. Sukhatme. 2006. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Medicine 3(3): e46. doi: 10.1371/journal.pmed.0030046.PubMedCrossRefGoogle Scholar
  15. 15.
    Cannon, J.G., R.G. Tompkins, J.A. Gelfand, H.R. Michie, G.G. Stanford, J.W. van der Meer, S. Endres, G. Lonnemann, J. Corsetti, B. Chernow, et al. 1990. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. The Journal of Infectious Diseases 161(1): 79–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Minamino, T., and I. Komuro. 2006. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. The Journal of Clinical Investigation 116(9): 2316–2319. doi: 10.1172/JCI29637.PubMedCrossRefGoogle Scholar
  17. 17.
    Ogawa, T., S. Shimizu, I. Tojima, H. Kouzaki, and T. Shimizu. 2011. Heparin inhibits mucus hypersecretion in airway epithelial cells. American Journal of Rhinology & Allergy 25(2): 69–74. doi: 10.2500/ajra.2011.25.3562.CrossRefGoogle Scholar
  18. 18.
    Blackwell, T.S., T.R. Blackwell, E.P. Holden, B.W. Christman, and J.W. Christman. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. The Journal of Immunology 157(4): 1630–1637.PubMedGoogle Scholar
  19. 19.
    Liu, S.F., X. Ye, and A.B. Malik. 1999. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation 100(12): 1330–1337.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, H.S., H.J. Kim, C.S. Moon, Y.H. Chong, and J.L. Kang. 2004. Inhibition of c-Jun NH2-terminal kinase or extracellular signal-regulated kinase improves lung injury. Respiratory Research 5: 23. doi: 10.1186/1465-9921-5-23.PubMedCrossRefGoogle Scholar
  21. 21.
    Abu-Amer, Y., F.P. Ross, K.P. McHugh, A. Livolsi, J.F. Peyron, and S.L. Teitelbaum. 1998. Tumor necrosis factor-alpha activation of nuclear transcription factor-kappaB in marrow macrophages is mediated by c-Src tyrosine phosphorylation of Ikappa Balpha. The Journal of Biological Chemistry 273(45): 29417–29423.PubMedCrossRefGoogle Scholar
  22. 22.
    Fan, C., Q. Li, D. Ross, and J.F. Engelhardt. 2003. Tyrosine phosphorylation of I kappa B alpha activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. The Journal of Biological Chemistry 278(3): 2072–2080. doi: 10.1074/jbc.M206718200M206718200.PubMedCrossRefGoogle Scholar
  23. 23.
    Kang, J.L., H.J. Jung, K. Lee, and H.R. Kim. 2006. Src tyrosine kinases mediate crystalline silica-induced NF-kappaB activation through tyrosine phosphorylation of IkappaB-alpha and p65 NF-kappaB in RAW 264.7 macrophages. Toxicological Sciences 90(2): 470–477. doi: 10.1093/toxsci/kfj096.PubMedCrossRefGoogle Scholar
  24. 24.
    Kang, J.L., H.W. Lee, H.J. Kim, H.S. Lee, V. Castranova, C.M. Lim, and Y. Koh. 2005. Inhibition of SRC tyrosine kinases suppresses activation of nuclear factor-kappaB, and serine and tyrosine phosphorylation of IkappaB-alpha in lipopolysaccharide-stimulated raw 264.7 macrophages. Journal of Toxicology and Environmental Health. Part A 68(19): 1643–1662. doi: 10.1080/15287390500192114.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, H.S., C. Moon, H.W. Lee, E.M. Park, M.S. Cho, and J.L. Kang. 2007. Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. The Journal of Immunology 179(10): 7001–7011.PubMedGoogle Scholar
  26. 26.
    Kim, H.J., H.S. Lee, Y.H. Chong, and J.L. Kang. 2006. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225(1): 36–47. doi: 10.1016/j.tox.2006.04.053.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dongmei Zhao
    • 1
  • Renyu Ding
    • 1
  • Yiran Mao
    • 1
  • Liang Wang
    • 1
  • Zhidan Zhang
    • 1
  • Xiaochun Ma
    • 1
  1. 1.Department of Intensive Care MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina

Personalised recommendations