Skip to main content
Log in

Heparin Rescues Sepsis-Associated Acute Lung Injury and Lethality Through the Suppression of Inflammatory Responses

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Heparin, a potent blood anticoagulant, is known to possess anti-inflammatory activity. In this work, we investigated whether heparin can ameliorate acute lung injury and lethal response in lipopolysaccharide (LPS)-induced mouse model of sepsis. We found that heparin effectively rescued lethality, improved lung pathological changes, inhibited myeloperoxidase (MPO) activity, and reduced malondialdehyde (MDA) level, lung wet/dry weight ratio and Evans blue values in LPS-induced septic mice. In addition, heparin also inhibited the release of tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and IL-1β in serum and decreased the expression of p-p38, nuclear factor κB (NF-κB) and p-c-SRC kinase in lungs of septic mice. Our findings suggest that heparin is capable of suppressing the lethal response and acute lung injury associated with sepsis, and support the notion that heparin may be a potential therapeutic agent for the conditions associated with septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Russell, J.A. 2006. Management of sepsis. The New England Journal of Medicine 355(16): 1699–1713. doi:10.1056/NEJMra043632.

    Article  PubMed  CAS  Google Scholar 

  2. Fry, D.E. 2012. Sepsis, systemic inflammatory response, and multiple organ dysfunction: The mystery continues. The American Surgeon 78(1): 1–8.

    PubMed  Google Scholar 

  3. Dombrovskiy, V.Y., A.A. Martin, J. Sunderram, and H.L. Paz. 2007. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: A trend analysis from 1993 to 2003. Critical Care Medicine 35(5): 1244–1250. doi:10.1097/01.CCM.0000261890.41311.E9.

    Article  PubMed  Google Scholar 

  4. Netea, M.G., J.W. van der Meer, M. van Deuren, and B.J. Kullberg. 2003. Proinflammatory cytokines and sepsis syndrome: Not enough, or too much of a good thing? Trends in Immunology 24(5): 254–258.

    Article  PubMed  CAS  Google Scholar 

  5. Abraham, E., A. Carmody, R. Shenkar, and J. Arcaroli. 2000. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 279(6): L1137–L1145.

    PubMed  CAS  Google Scholar 

  6. Silva, E., J. Arcaroli, Q. He, D. Svetkauskaite, C. Coldren, J.A. Nick, K. Poch, J.S. Park, A. Banerjee, and E. Abraham. 2007. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Medicine 33(10): 1829–1839. doi:10.1007/s00134-007-0748-2.

    Article  PubMed  CAS  Google Scholar 

  7. Lever, R., and C.P. Page. 2002. Novel drug development opportunities for heparin. Nature Reviews. Drug Discovery 1(2): 140–148. doi:10.1038/nrd724.

    Article  PubMed  CAS  Google Scholar 

  8. Hirsh, J., S.S. Anand, J.L. Halperin, and V. Fuster. 2001. Guide to anticoagulant therapy: Heparin: A statement for healthcare professionals from the American Heart Association. Circulation 103(24): 2994–3018.

    Article  PubMed  CAS  Google Scholar 

  9. Baglin, T., T.W. Barrowcliffe, A. Cohen, and M. Greaves. 2006. Guidelines on the use and monitoring of heparin. British Journal of Haematology 133(1): 19–34. doi:10.1111/j.1365-2141.2005.05953.x.

    Article  PubMed  CAS  Google Scholar 

  10. Young, E. 2008. The anti-inflammatory effects of heparin and related compounds. Thrombosis Research 122(6): 743–752. doi:10.1016/j.thromres.2006.10.026.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, M., J. He, B. Mei, X. Ma, and Z. Huo. 2008. Therapeutic effects and anti-inflammatory mechanisms of heparin on acute lung injury in rabbits. Academic Emergency Medicine 15(7): 656–663.

    Article  PubMed  Google Scholar 

  12. Mu, E., R. Ding, X. An, X. Li, S. Chen, and X. Ma. 2012. Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thrombosis Research 129(4): 479–485. doi:10.1016/j.thromres.2011.10.003.

    Article  PubMed  CAS  Google Scholar 

  13. Weng, T.I., H.Y. Wu, C.W. Kuo, and S.H. Liu. 2011. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Medicine 37(3): 533–541. doi:10.1007/s00134-010-2104-1.

    Article  PubMed  CAS  Google Scholar 

  14. Parikh, S.M., T. Mammoto, A. Schultz, H.T. Yuan, D. Christiani, S.A. Karumanchi, and V.P. Sukhatme. 2006. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Medicine 3(3): e46. doi:10.1371/journal.pmed.0030046.

    Article  PubMed  Google Scholar 

  15. Cannon, J.G., R.G. Tompkins, J.A. Gelfand, H.R. Michie, G.G. Stanford, J.W. van der Meer, S. Endres, G. Lonnemann, J. Corsetti, B. Chernow, et al. 1990. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. The Journal of Infectious Diseases 161(1): 79–84.

    Article  PubMed  CAS  Google Scholar 

  16. Minamino, T., and I. Komuro. 2006. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. The Journal of Clinical Investigation 116(9): 2316–2319. doi:10.1172/JCI29637.

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa, T., S. Shimizu, I. Tojima, H. Kouzaki, and T. Shimizu. 2011. Heparin inhibits mucus hypersecretion in airway epithelial cells. American Journal of Rhinology & Allergy 25(2): 69–74. doi:10.2500/ajra.2011.25.3562.

    Article  Google Scholar 

  18. Blackwell, T.S., T.R. Blackwell, E.P. Holden, B.W. Christman, and J.W. Christman. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. The Journal of Immunology 157(4): 1630–1637.

    PubMed  CAS  Google Scholar 

  19. Liu, S.F., X. Ye, and A.B. Malik. 1999. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation 100(12): 1330–1337.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, H.S., H.J. Kim, C.S. Moon, Y.H. Chong, and J.L. Kang. 2004. Inhibition of c-Jun NH2-terminal kinase or extracellular signal-regulated kinase improves lung injury. Respiratory Research 5: 23. doi:10.1186/1465-9921-5-23.

    Article  PubMed  Google Scholar 

  21. Abu-Amer, Y., F.P. Ross, K.P. McHugh, A. Livolsi, J.F. Peyron, and S.L. Teitelbaum. 1998. Tumor necrosis factor-alpha activation of nuclear transcription factor-kappaB in marrow macrophages is mediated by c-Src tyrosine phosphorylation of Ikappa Balpha. The Journal of Biological Chemistry 273(45): 29417–29423.

    Article  PubMed  CAS  Google Scholar 

  22. Fan, C., Q. Li, D. Ross, and J.F. Engelhardt. 2003. Tyrosine phosphorylation of I kappa B alpha activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. The Journal of Biological Chemistry 278(3): 2072–2080. doi:10.1074/jbc.M206718200M206718200.

    Article  PubMed  CAS  Google Scholar 

  23. Kang, J.L., H.J. Jung, K. Lee, and H.R. Kim. 2006. Src tyrosine kinases mediate crystalline silica-induced NF-kappaB activation through tyrosine phosphorylation of IkappaB-alpha and p65 NF-kappaB in RAW 264.7 macrophages. Toxicological Sciences 90(2): 470–477. doi:10.1093/toxsci/kfj096.

    Article  PubMed  CAS  Google Scholar 

  24. Kang, J.L., H.W. Lee, H.J. Kim, H.S. Lee, V. Castranova, C.M. Lim, and Y. Koh. 2005. Inhibition of SRC tyrosine kinases suppresses activation of nuclear factor-kappaB, and serine and tyrosine phosphorylation of IkappaB-alpha in lipopolysaccharide-stimulated raw 264.7 macrophages. Journal of Toxicology and Environmental Health. Part A 68(19): 1643–1662. doi:10.1080/15287390500192114.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, H.S., C. Moon, H.W. Lee, E.M. Park, M.S. Cho, and J.L. Kang. 2007. Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. The Journal of Immunology 179(10): 7001–7011.

    PubMed  CAS  Google Scholar 

  26. Kim, H.J., H.S. Lee, Y.H. Chong, and J.L. Kang. 2006. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225(1): 36–47. doi:10.1016/j.tox.2006.04.053.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Ding, R., Mao, Y. et al. Heparin Rescues Sepsis-Associated Acute Lung Injury and Lethality Through the Suppression of Inflammatory Responses. Inflammation 35, 1825–1832 (2012). https://doi.org/10.1007/s10753-012-9503-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9503-0

KEY WORDS

Navigation