Skip to main content

Advertisement

Log in

Fructose-1,6-Bisphosphate Reduces the Mortality in Candida albicans Bloodstream Infection and Prevents the Septic-Induced Platelet Decrease

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Due to the fact that an increased number of patients have experienced bloodstream infections caused by Candida species and the high mortality of this infection, there is a need for a strategy to reduce this scenery. One possible strategy is the use of new drugs, such as fructose-1,6-bisphosphate (FBP), which is a high-energy glycolytic metabolite and has shown to have therapeutic effects in several pathological conditions such as ischemia, shock, toxic injuries, and bacterial sepsis. The aim of this manuscript was to determine the role of FBP in experimental Candida albicans bloodstream infection. We used mice that were divided into three experimental groups: sham (not induced), bloodstream infection (induced with intratracheal instillation of C. albicans) and FBP (bloodstream infection plus FBP 500 mg/kg i.p.). Blood was taken for assessment of complete hematological profile and cytokine assay (IL-6 and MCP-1). Results of the study demonstrated that mortality decreased significantly in groups that received FBP. All cytokine and hematological indexes of FBP group were similar to bloodstream infection group with exception of platelets count. FBP significantly prevented the decrease in platelets. Taken together, our results demonstrate that FBP prevented the mortality in C. albicans bloodstream infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Lamagni, T.L., B.G. Evans, M. Shigematsu, and E.M. Johnson. 2001. Emerging trends in the epidemiology of invasive mycoses in England and Wales (1990–9). Epidemiology and Infection 126: 397–414.

    Article  PubMed  CAS  Google Scholar 

  2. Eloy, O., V. Blanc, P. Pina, A. Gaudart, M.L. Bressole, C. Plainvert, et al. 2006. Epidemiology of candidemia: results of a one month French hospitals-based surveillance study in 2004. Pathologie Biologie 54: 523–530.

    Article  PubMed  CAS  Google Scholar 

  3. Wisplinghoff, H., T. Bischoff, S.M. Tallent, H. Seifert, R.P. Wenzel, and M.B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases 39: 309–317.

    Article  PubMed  Google Scholar 

  4. Gudlaugsson, O., S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer, et al. 2003. Attributable mortality of nosocomial candidemia revisited. Clinical Infectious Diseases 37: 1172–1177.

    Article  PubMed  Google Scholar 

  5. Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348: 1546–1554.

    Article  PubMed  Google Scholar 

  6. Xu, K., and J.L. Stringer. 2008. Pharmacokinetics of fructose-1,6-diphosphate after intraperitoneal and oral administration to adult rats. Pharmacological Research 57: 234–238.

    Article  PubMed  CAS  Google Scholar 

  7. Yin, H., X.B. Jin, Q. Gong, H. Yang, H. Li, F.L. Gong, et al. 2008. Fructose-1,6-diphosphate attenuates acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 20: 1842–1847.

    Article  Google Scholar 

  8. Lopes, R.P., A. Lunardelli, T. Preissler, C.E. Leite, J.C.F. Alves-Filho, F.B. Nunes, et al. 2006. The effects of fructose-1,6-bisphosphate and dexamethasone on acute inflammation and T-cell proliferation. Inflammation Research 55: 354–358.

    Article  PubMed  CAS  Google Scholar 

  9. Nunes, F.B., J.C.F. Alves-Filho, C.M. Alves Bastos, P.M. Tessele, E. Caberlon, K.B. Moreira, et al. 2004. Effect of the chlorpropamide and fructose-1,6-bisphosphate of soluble TNF receptor II levels. Pharmacological Research 49: 449–453.

    Article  PubMed  CAS  Google Scholar 

  10. Alves-Filho, J.C., R.C. Santos, T.A. Castaman, and J.R. Oliveira. 2004. Anti-inflammatory effects of fructose-1,6-bisphosphate on carrageenan-induced pleurisy in rat. Pharmacological Research 49: 245–248.

    Article  PubMed  CAS  Google Scholar 

  11. Nunes, F.B., M.G. Simões Pires, J.C.F. Alves-Filho, P.H. Wachter, and J.R. Oliveira. 2002. Physiopathological studies in septic rats and the use of fructose 1,6-bisphosphate as cellular protection. Critical Care Medicine 30: 2069–2074.

    Article  PubMed  CAS  Google Scholar 

  12. Nunes, F.B., C.M. Graziottin, J.C.F. Alves-Filho, P.H. Wachter, and J.R. Oliveira. 2003. An assessment of fructose-1,6-bisphosphate as an antimicrobial and anti-inflammatory agent in sepsis. Pharmacological Research 47: 35–44.

    Article  PubMed  CAS  Google Scholar 

  13. Levi, M. 2008. The coagulant response in sepsis. Clinics in Chest Medicine 29: 627–642.

    Article  PubMed  Google Scholar 

  14. Remick, D.G., G. Bolgos, S. Copeland, and J. Siddiqui. 2005. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity 5: 2751–2757.

    Article  Google Scholar 

  15. Nunes, F.B., P.B. Gaspareto, R.C.V. Santos, M. de Assis, C.M. Graziottin, V. Biolchi, et al. 2003. Intravenous toxicity of fructose-1,6-bisphosphate in rats. Toxicology Letters 143(1): 73–81.

    Article  PubMed  CAS  Google Scholar 

  16. Papadimitriou, J.M., and R.B. Ashman. 1986. The pathogenesis of acute systemic candidiasis in a susceptible inbred mouse strain. The Journal of Pathology 150: 257–265.

    Article  PubMed  CAS  Google Scholar 

  17. Romani, L., A. Mencacci, E. Cenci, R. Spaccapelo, P. Mosci, P. Puccetti, and F. Bistoni. 1993. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. Journal of Immunology 150: 925–931.

    CAS  Google Scholar 

  18. Hurley, R. 1996. Effect of route of entry of Candida albicans on the histogenis of the lesions in experimental candidosis in the mouse. Journal of Pathology and Bacteriology 92: 578–583.

    Article  Google Scholar 

  19. Nuget, K.M., and J.M. Onofrio. 1983. Pulmonary tissue resistance to Candida albicans in normal and immunosuppressed mice. American Review of Respiratory Disease 128: 909–914.

    Google Scholar 

  20. Sawyer, R.T. 1990. Experimental pulmonary candidiasis. Mycopathologia 109: 99–109.

    Article  PubMed  CAS  Google Scholar 

  21. Fallon, K., K. Bausch, J. Noonan, E. Huguenel, and P. Tamburini. 1997. Role of aspartic proteases in disseminated Candida albicans infection in mice. Infection and Immunity 65: 551–556.

    PubMed  CAS  Google Scholar 

  22. de Mello, R.O., A. Lunardelli, E. Caberlon, C.M. de Moraes, R. Christ Vianna Santos, V.L. da Costa, et al. 2010. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflamm. doi:10.1007/s10753-010-9261-9.

  23. Oliveira, L.M., M.G.S. Pires, A.B. Magrisso, T.P. Munhoz, R. Roesler, and J.R. Oliveira. 2010. Fructose-1, 6-bisphosphate inhibits in vitro and ex vivo platelet aggregation induced by ADP and ameliorates coagulation alterations in experimental sepsis in rats. Journal of Thrombosis and Thrombolysis 29: 387–394.

    Article  PubMed  CAS  Google Scholar 

  24. Hechler, B., C. Léon, C. Vial, P. Vigne, C. Frelin, J.P. Cazenave, et al. 1998. The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92(1): 152–159.

    PubMed  CAS  Google Scholar 

  25. Cavallini, L., R. Deana, M.A. Francesconi, and A. Alexandre. 1992. Fructose-1,6-diphosphate inhibits platelet activation. Biochemical Pharmacology 43(7): 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  26. Levi, M., E. Jonge, and T. Van Der Poll. 2003. Sepsis and disseminated intravascular coagulation. Journal of Thrombosis and Thrombolysis 16(1–2): 43–47.

    Article  PubMed  CAS  Google Scholar 

  27. Biswas, P., F. Delfanti, S. Bernasconi, M. Mengozzi, M. Cota, N. Polentarutti, et al. 1998. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91(1): 258–265.

    PubMed  CAS  Google Scholar 

  28. Sola, A., J. Panes, C. Xaus, and G. Hotter. 2003. Fructose-1,6-biphosphate and nucleoside pool modifications prevent neutrophil accumulation in the reperfused intestine. Journal of Leukocyte Biology 73: 74–81.

    Article  PubMed  Google Scholar 

  29. Yin, H., X.B. Jin, Q. Gong, H. Yang, L.Y. Hu, F.L. Gong, et al. 2008. Fructose-1,6-diphosphate attenuates acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 8(13–14): 1842–1847.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by grants from FAPERGS and CAPES/DGU (BEX 4422/09-0 and BEX3449/11-4), Brazil; Institut d’Investigació Biomèdica de Bellvitge (IDIBELL); and Secretaría de Estado de Universidades, Ministerio de Ciencia e Innovación (PHB2008-0080-PC), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Christ Vianna Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, R.C.V., Moresco, R.N., Peña Rico, M.A. et al. Fructose-1,6-Bisphosphate Reduces the Mortality in Candida albicans Bloodstream Infection and Prevents the Septic-Induced Platelet Decrease. Inflammation 35, 1256–1261 (2012). https://doi.org/10.1007/s10753-012-9436-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9436-7

KEY WORDS

Navigation