, Volume 35, Issue 4, pp 1223–1231 | Cite as

A High Molecular Weight Protein Extract of Mastobranchus indicus (Mi-64) Having Antiarthritic Activity in Experimental Animals

  • Mohammed Aftab Alam
  • Santosh Kumar Sarkar
  • Antony Gomes


Mi-64, a high molecular weight protein (130 kDa), obtained from the tissue homogenate of marine polychaete (Mastobranchus indicus) collected from the Indian Sunderban has antiarthritic activity in experimental animals. The FCA-induced arthritis model was developed in Wistar albino rats to evaluate the antiarthritic effects of Mi-64. After FCA induction, the rats were treated with Mi-64 (0.25 and 0.5 mg kg−1 body weight) for 10 days. We have determined the paw/ankle swellings, urinary hydroxyproline and glucosamine, serum acid and alkaline phosphatases to assess the antiarthritic activity. The levels of interleukin-1 beta (IL-1β), IL-6, cytokine-induced neutrophil chemoattractant-1 (CINC-1), tumor necrosis factor-alpha (TNF-α), and IL-10 were measured by ELISA. Results showed that Mi-64 significantly reduced paw/ankle swellings and restored the urinary hydroxyproline/glucosamine and serum phosphatases. Mi-64 significantly inhibited the overproduction of IL-1β, IL-6, CINC-1, and TNF-α and augmented IL-10 production. The data suggest that Mi-64 produced significant antiarthritic effects that may be mediated by balancing the pro- and anti-inflammatory cytokines.


marine polychaete Mastobranchus indicus Mi-64 adjuvant-induced arthritis 



This study was partially supported by University Grant Commission under University with Potential for Excellence (Modern Biology) Scheme (Sanction no. UGC/199/UPE/07), New Delhi, India.


  1. 1.
    Baslow, M.N. 1969. Marine Pharmacology. Baltimore: Williams and Wilkins.Google Scholar
  2. 2.
    Halvorson, D.J., J.R. Dupree, and E.S. Porubsky. 1998. Management of chronic sinusitis in the adult cystic fibrosis patient. Annals of Otology, Rhinology and Laryngology 107: 946–952.Google Scholar
  3. 3.
    Hrzenjak, T.M., M. Popović, and L. Tiska-Rudman. 1998. Fibrinolytic activity of earthworms extract (G-90) on lysis of fibrin clots originated from the venous blood of patients with malignant tumors. Pathology and Oncology Research 4: 206–211.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper, E.L. 2004. Complementary and Alternative Medicine, when rigorous, can be Science. Evidence-based Complementary and Alternative Medicine 1: 1–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Hu, W., and T. Fu. 1997. Isolation and properties of a novel fibrinolytic enzyme from an earth worm. Zhong Yao Cai 20: 78–81.PubMedGoogle Scholar
  6. 6.
    Jarosz, J., and Z. Gliński. 1997. Earthworm immune responses. Folia Biologica (Krakow) 45: 1–9.Google Scholar
  7. 7.
    Grdisa, M., M. Popovic, and T. Hrzenjak. 2001. Glycolipoprotein extract (G-90) from earthworm Eisenia foetida exerts some antioxidative activity. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 128: 821–825.CrossRefGoogle Scholar
  8. 8.
    Grdisa, M., M. Popović, and T. Hrzenjak. 2004. Stimulation of growth factor synthesis in skin wounds using tissue extract (G-90) from the earthworm Eissenia foetida. Cell Biochemistry and Function 22: 373–378.PubMedCrossRefGoogle Scholar
  9. 9.
    Stürzenbaum, S.R., O. Georgiev, A.J. Morgan, and P. Kille. 2004. Cadmium detoxification in earthworms: From genes to cells. Environmental Science and Technology 38: 6283–6289.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, F., C. Wang, M. Li, J.P. Zhang, L.L. Gui, X.M. An, and W.R. Chang. 2005. Crystal structure of earthworm fibrinolytic enzyme component B: A novel, glycosylated two-chained trypsin. Journal of Molecular Biology 348: 671–685.PubMedCrossRefGoogle Scholar
  11. 11.
    Gabriel, S.E. 2001. The epidemiology of rheumatoid arthritis. Rheumatic Diseases Clinics of North America 27: 269–281.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi, J., K.T. Lee, H. Jung, H.S. Park, and H.J. Park. 2002. Anti-rheumatoid arthritis effect of the Kochia scoparia fruits and activity comparison of momordin lc, its prosapogenin and sapogenin. Archives of Pharmacal Research 25: 336–342.PubMedCrossRefGoogle Scholar
  13. 13.
    Pincus, T., T. Sokka, and H. Kautiainen. 2005. Further development of a physical function scale on a MDHAQ [corrected] for standard care of patients with rheumatic diseases. Journal of Rheumatology 32: 1432–1439.PubMedGoogle Scholar
  14. 14.
    Ding, C.H., Q. Li, Z.Y. Xiong, A.W. Zhou, G. Jones, and S.Y. Xu. 2003. Oral administration of type II collagen suppresses pro-inflammatory mediator production by synoviocytes in rats with adjuvant arthritis. Clinical and Experimental Immunology 132: 416–423.PubMedCrossRefGoogle Scholar
  15. 15.
    Williams, R. O. 2005. Models of rheumatoid arthritis. Ernst Schering Res Found Workshop, 89–117.Google Scholar
  16. 16.
    Fleischmann, R., R. Stern, and I. Iqbal. 2004. Anakinra: An inhibitor of IL-1 for the treatment of rheumatoid arthritis. Expert Opinion on Biological Therapy 4: 1333–1344.PubMedCrossRefGoogle Scholar
  17. 17.
    Chandrashekara, S., T. Anilkumar, and S. Jamuna. 2002. Complementary and alternative drug therapy in arthritis. The Journal of the Association of Physicians of India 50: 225–227.PubMedGoogle Scholar
  18. 18.
    Davies, N.M., and F. Jamali. 2004. COX-2 selective inhibitors cardiac toxicity: Getting to the heart of the matter. Journal of Pharmacy and Pharmaceutical Sciences 7: 332–336.PubMedGoogle Scholar
  19. 19.
    Barnes, P. M., E. Powell-Griner, K. McFann, and R.L. Nahin. 2004. Complementary and alternative medicine use among adults: United States, 2002. Advance Data, 1-19.Google Scholar
  20. 20.
    Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMedGoogle Scholar
  21. 21.
    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  22. 22.
    Neuman, R.E., and M.A. Logan. 1950. The determination of hydroxyproline. Journal of Biological Chemistry 184: 299–306.PubMedGoogle Scholar
  23. 23.
    Elson, L.A., and W.T. Morgan. 1933. A colorimetric method for the determination of glucosamine and chondrosamine. Biochemical Journal 27: 1824–1828.PubMedGoogle Scholar
  24. 24.
    Michell, R.H., M.J. Karnovsky, and M.L. Karnovsky. 1970. The distributions of some granule-associated enzymes in guinea-pig polymorphonuclear leucocytes. Biochemical Journal 116: 207–216.PubMedGoogle Scholar
  25. 25.
    Cobb, C.S., and E. Ernst. 2006. Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: The effectiveness of the New Zealand green-lipped mussel Perna canaliculus. Clinical Rheumatology 25: 275–284.PubMedCrossRefGoogle Scholar
  26. 26.
    Ugai, K., H. Ishikawa, K. Hirohata, and H. Shirane. 1983. Interaction of polymorphonuclear leukocytes with immune complexes trapped in rheumatoid articular cartilage. Arthritis and Rheumatism 26: 1434–1441.PubMedCrossRefGoogle Scholar
  27. 27.
    Prockop, D.J., P.S. Ebert, and B.M. Shapiro. 1964. Studies with proline-3,4,-H3 on hydroxylation of proline during collagen synthesis in chick embryos. Archives of Biochemistry and Biophysics 106: 112–122.PubMedCrossRefGoogle Scholar
  28. 28.
    Reddy, G.K., and S.C. Dhar. 1989. Metabolism of collagen in bone of adjuvant induced arthritic rat. Bone 10: 439–445.PubMedCrossRefGoogle Scholar
  29. 29.
    Goidanich, I.F., L. Lenzi, and E. Silva. 1965. Urinary hydroxyproline excretion in normal subjects and in patients affected with primary diseases of bone. Clinica Chimica Acta 11: 35–38.CrossRefGoogle Scholar
  30. 30.
    Kelleher, P.C. 1979. Urinary excretion of hydroxyproline, hydroxylysine and hydroxylysine glycosides by patients with Paget's disease of bone and carcinoma with metastases in bone. Clinica Chimica Acta 92: 373–379.CrossRefGoogle Scholar
  31. 31.
    Nakamura, H., K. Masuko, K. Yudoh, T. Kato, T. Kamada, and T. Kawahara. 2007. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatology International 27: 213–218.PubMedCrossRefGoogle Scholar
  32. 32.
    Reddy, G.K., S.C. Dhar, and G.B. Singh. 1987. Urinary excretion of connective tissue metabolites under the influence of a new non-steroidal anti-inflammatory agent in adjuvant induced arthritis. Agents and Actions 22: 99–105.PubMedCrossRefGoogle Scholar
  33. 33.
    Yasuda, M., T. Okabe, J. Itoh, S. Takekoshi, H. Hasegawa, H. Nagata, R.Y. Osamura, and K. Watanabe. 2000. Differentiation of necrotic cell death with or without lysosomal activation: Application of acute liver injury models induced by carbon tetrachloride (CCl4) and dimethylnitrosamine (DMN). Journal of Histochemistry and Cytochemistry 48: 1331–1339.PubMedCrossRefGoogle Scholar
  34. 34.
    Gomes, A., S. Bhattacharya, M. Chakraborty, P. Bhattacharjee, and R. Mishra. 2010. Anti-arthritic activity of Indian monocellate cobra (Naja kaouthia) venom on adjuvant induced arthritis. Toxicon 55: 670–673.PubMedCrossRefGoogle Scholar
  35. 35.
    Waksman, B.H. 2002. Immune regulation in adjuvant disease and other arthritis models: relevance to pathogenesis of chronic arthritis. Scandinavian Journal of Immunology 56: 12–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Arend, W.P., and J.M. Dayer. 1995. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis and Rheumatism 38: 151–160.PubMedCrossRefGoogle Scholar
  37. 37.
    Ivashkiv, L.B. 1996. Cytokine expression and cell activation in inflammatory arthritis. Advances in Immunology 63: 337–376.PubMedCrossRefGoogle Scholar
  38. 38.
    Feldmann, M., F.M. Brennan, and R.N. Maini. 1996. Role of cytokines in rheumatoid arthritis. Annual Review of Immunology 14: 397–440.PubMedCrossRefGoogle Scholar
  39. 39.
    Takano, K., and H. Nakagawa. 2001. Contribution of cytokine-induced neutrophil chemoattractant CINC-2 and CINC-3 to neutrophil recruitment in lipopolysaccharide-induced inflammation in rats. Inflammation Research 50: 503–508.PubMedCrossRefGoogle Scholar
  40. 40.
    Canetti, C.A., B.P. Leung, S. Culshaw, I.B. McInnes, F.Q. Cunha, F.W. Liew, and C.A. Cannetti. 2003. IL-18 enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene B4. Journal of Immunology 171: 1009–1015.Google Scholar
  41. 41.
    Liew, F.Y., and I.B. McInnes. 2002. The role of innate mediators in inflammatory response. Molecular Immunology 38: 887–890.PubMedCrossRefGoogle Scholar
  42. 42.
    Nanki, T., K. Nagasaka, K. Hayashida, Y. Saita, and N. Miyasaka. 2001. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Immunology 167: 5381–5385.Google Scholar
  43. 43.
    Joosten, L.A., M.M. Helsen, F.A. van de Loo, and W.B. van den Berg. 1996. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1Ra. Arthritis and Rheumatism 39: 797–809.PubMedCrossRefGoogle Scholar
  44. 44.
    Moreland, L.W., M.H. Schiff, S.W. Baumgartner, E.A. Tindall, R.M. Fleischmann, K.J. Bulpitt, A.L. Weaver, E.C. Keystone, D.E. Furst, P.J. Mease, E.M. Ruderman, D.A. Horwitz, D.G. Arkfeld, L. Garrison, D.J. Burge, C.M. Blosch, M.L. Lange, N.D. McDonnell, and M.E. Weinblatt. 1999. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Annals of Internal Medicine 130: 478–486.PubMedGoogle Scholar
  45. 45.
    Boe, A., M. Baiocchi, M. Carbonatto, R. Papoian, and O. Serlupi-Crescenzi. 1999. Interleukin 6 knock-out mice are resistant to antigen-induced experimental arthritis. Cytokine 11: 1057–1064.PubMedCrossRefGoogle Scholar
  46. 46.
    Nishimoto, N., K. Yoshizaki, K. Maeda, T. Kuritani, H. Deguchi, B. Sato, N. Imai, M. Suemura, T. Kakehi, N. Takagi, and T. Kishimoto. 2003. Toxicity, pharmacokinetics, and dose-finding study of repetitive treatment with the humanized anti-interleukin 6 receptor antibody MRA in rheumatoid arthritis. Phase I/II clinical study. Journal of Rheumatology 30: 1426–1435.PubMedGoogle Scholar
  47. 47.
    Moore, K.W., A. O'Garra, R. de Waal Malefyt, P. Vieira, and T.R. Mosmann. 1993. Interleukin-10. Annual Review of Immunology 11: 165–190.PubMedCrossRefGoogle Scholar
  48. 48.
    van Roon, J.A., F.P. Lafeber, and J.W. Bijlsma. 2001. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis and Rheumatism 44: 3–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Katsikis, P.D., C.Q. Chu, F.M. Brennan, R.N. Maini, and M. Feldmann. 1994. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. The Journal of Experimental Medicine 179: 1517–1527.PubMedCrossRefGoogle Scholar
  50. 50.
    Hisadome, M., T. Fukuda, H. Sumichika, T. Hanano, and K. Adachi. 2000. A novel anti-rheumatic drug suppresses tumor necrosis factor-alpha and augments interleukin-10 in adjuvant arthritic rats. European Journal of Pharmacology 409: 331–335.PubMedCrossRefGoogle Scholar
  51. 51.
    Baumgartner, W.A., F.W. Beck, A. Lorber, C.M. Pearson, and M.W. Whitehouse. 1974. Adjuvant disease in rats: Biochemical criteria for distinguishing several phases of inflammation and arthritis. Proceedings of the Society for Experimental Biology and Medicine 145: 625–630.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammed Aftab Alam
    • 1
    • 3
  • Santosh Kumar Sarkar
    • 1
  • Antony Gomes
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of PhysiologyUniversity of CalcuttaKolkataIndia
  3. 3.Department of MicrobiologyUniversity of CalcuttaKolkataIndia

Personalised recommendations