, Volume 35, Issue 1, pp 23–32 | Cite as

Redistribution of Tight Junction Proteins During EPEC Infection In Vivo

  • Qiang Zhang
  • Qiurong Li
  • Chenyang Wang
  • Ning Li
  • Jieshou Li


Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea among infants. Tight junction plays a vital role in intestinal paracellular permeability by forming physical intercellular barriers in epithelial cells. However, the impact of this enteric pathogen on tight junctions in vivo has not been fully investigated. In the present study, the alterations in tight junctions following EPEC infection in vivo were investigated. Western blot analysis revealed that the tight junction proteins, occludin and claudin-1, were displaced from tight junction membrane microdomains to Triton X-100 soluble fractions after EPEC infection. Changes in intestinal paracellular permeability were determined using the molecular tracer biotin, which was observed to penetrate the epithelia and extended into the lamina propria, indicating disruption in tight junction barrier function. Our results suggested that redistribution of tight junction proteins plays an important role in the disruption of epithelial barrier function induced by EPEC infection, which may provide new insight into the pathogenesis of diarrhea caused by EPEC.


enteropathogenic E. coli tight junction claudins occludin barrier function 



This work was supported by the Key Project of National Natural Science Foundation in China (30830098), the National Basic Research Program (973 Program) in China (Nos. 2007CB513005 and 2009CB522405), the National Natural Science Foundation in China (81070375), the Scientific Research Fund in Jiangsu Province (BK2009317), and the National Key Project of Scientific and Technical Supporting Programs funded by the Ministry of Science & Technology of China (2008BAI60B06).


  1. 1.
    Guttman, J.A., F.N. Samji, Y.L. Li, W.Y. Deng, A. Lin, and B.B. Finlay. 2007. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cellular Microbiology 9: 131–141.PubMedCrossRefGoogle Scholar
  2. 2.
    Phillips, A.D., J. Giròn, S. Hicks, D. Gordon, and G. Frankel. 2000. Intimin from enteropathogenic Escherichia coli mediates remodelling of the eukaryotic cell surface. Microbiology 146: 1333–1344.PubMedGoogle Scholar
  3. 3.
    Clarke, S.C., R.D. Haigh, P.P. Freestone, and P.H. Williams. 2003. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clinical Microbiology Reviews 16: 365–378.PubMedCrossRefGoogle Scholar
  4. 4.
    Muza-Moons, M.M., A. Koutsouris, and G. Hecht. 2003. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infection and Immunity 71: 7069–7078.PubMedCrossRefGoogle Scholar
  5. 5.
    Ruchaud-Sparagano, M.H., M. Maresca, and B. Kenny. 2007. Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function. Cellular Microbiology 9: 1909–1921.PubMedCrossRefGoogle Scholar
  6. 6.
    Matsuzawa, T., A. Kuwae, S. Yoshida, C. Sasakawa, and A. Abe. 2004. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. The EMBO Journal 23: 3570–3582.PubMedCrossRefGoogle Scholar
  7. 7.
    Dean, P., and B. Kenny. 2009. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Current Opinion in Microbiology 12: 101–109.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, H.D., and G. Frankel. 2005. Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiology Reviews 29: 83–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Dean, P., M. Maresca, and B. Kenny. 2005. EPEC's weapons of mass subversion. Current Opinion in Microbiology 8: 28–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Vallance, B.A., and B.B. Finlay. 2000. Exploitation of host cells by enteropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 97: 8799–8806.PubMedCrossRefGoogle Scholar
  11. 11.
    Groschwitz, K.R., and S.P. Hogan. 2009. Intestinal barrier function: molecular regulation and disease pathogenesis. The Journal of Allergy and Clinical Immunology 124: 3–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Weflen, A.W., N.M. Alto, and G.A. Hecht. 2009. Tight junctions and enteropathogenic E. coli. Annals of the New York Academy of Sciences 1165: 169–174.PubMedCrossRefGoogle Scholar
  13. 13.
    Gassler, N., C. Rohr, A. Schneider, J. Kartenbeck, A. Bach, N. Obermuller, et al. 2001. Inflammatory bowel disease is associated with changes of enterocytic junctions. American Journal of Physiology. Gastrointestinal and Liver Physiology 281: G216–G228.PubMedGoogle Scholar
  14. 14.
    Tummala, S., S. Keates, and C.P. Kelly. 2004. Update on the immunologic basis of Helicobacter pylori gastritis. Current Opinion in Gastroenterology 20: 592–597.PubMedCrossRefGoogle Scholar
  15. 15.
    Li, Q.R., Q. Zhang, C.Y. Wang, N. Li, and J.S. Li. 2008. Invasion of enteropathogenic Escherichia coli into host cells through epithelial tight junctions. The FEBS Journal 275: 6022–6032.PubMedCrossRefGoogle Scholar
  16. 16.
    Muza-Moons, M.M., E.E. Schneeberger, and G.A. Hecht. 2004. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cellular Microbiology 6: 783–793.PubMedCrossRefGoogle Scholar
  17. 17.
    Simonovic, I., J. Rosenberg, A. Koutsouris, and G. Hecht. 2000. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cellular Microbiology 2: 305–315.PubMedCrossRefGoogle Scholar
  18. 18.
    Spitz, J., R. Yuhan, A. Koutsouris, C. Blatt, J. Alverdy, and G. Hecht. 1995. Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. American Journal of Physiology. Gastrointestinal and Liver Physiology 268: G374–G379.Google Scholar
  19. 19.
    Guttman, J.A., Y.L. Li, M.E. Wickham, W.Y. Deng, A.W. Vogl, and B.B. Finlay. 2006. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cellular Microbiology 8: 634–645.PubMedCrossRefGoogle Scholar
  20. 20.
    Guttman, J.A., F.N. Samji, Y.L. Li, A.W. Vogl, and B.B. Finlay. 2006. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infection and Immunity 74: 6075–6084.PubMedCrossRefGoogle Scholar
  21. 21.
    Shifflett, D.E., D.R. Clayburgh, A. Koutsouris, J.R. Turner, and G.A. Hecht. 2005. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Laboratory Investigation 85: 1308–1324.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, Q.R., Q. Zhang, M. Zhang, C.Y. Wang, Z.X. Zhu, N. Li, and J.S. Li. 2008. Effect of n-3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. The FEBS Journal 275: 411–420.PubMedCrossRefGoogle Scholar
  23. 23.
    Nusrat, A., C.A. Parkos, P. Verkade, C.S. Foley, T.W. Liang, W. Innis-Whitehouse, et al. 2000. Tight junctions are membrane microdomains. Journal of Cell Science 113: 1771–1781.PubMedGoogle Scholar
  24. 24.
    Zhang, Q., Q.R. Li, C.Y. Wang, X.X. Liu, N. Li, and J.S. Li. 2010. Enteropathogenic Escherichia coli changes distribution of occludin and ZO-1 in tight junction membrane microdomains in vivo. Microbial Pathogenesis 48: 28–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaper, J.B., J.P. Nataro, and H.L. Mobley. 2004. Pathogenic Escherichia coli. Nature Reviews. Microbiology 2: 123–140.PubMedCrossRefGoogle Scholar
  26. 26.
    Moon, H.W., S.C. Whipp, R.A. Argenzio, M.M. Levine, and R.A. Giannella. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infection and Immunity 41: 1340–1351.PubMedGoogle Scholar
  27. 27.
    Ulshen, M.H., and J.L. Rollo. 1980. Pathogenesis of Escherichia coli gastroenteritis in man—another mechanism. New England Journal of Medicine 302: 99–101.PubMedCrossRefGoogle Scholar
  28. 28.
    Balda, M.S., and K. Matter. 1998. Tight junctions. Journal of Cell Science 111: 541–547.PubMedGoogle Scholar
  29. 29.
    Förster, C. 2008. Tight junctions and the modulation of barrier function in disease. Histochemistry and Cell Biology 130: 55–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Tomson, F.L., V.K. Viswanathan, K.J. Kanack, R.P. Kanteti, K.V. Straub, M. Menet, et al. 2005. Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Molecular Microbiology 56: 447–464.PubMedCrossRefGoogle Scholar
  31. 31.
    Hollander, D. 1993. Permeability in Crohn's disease: altered barrier functions in healthy relatives? Gastroenterology 104: 1848–1851.PubMedGoogle Scholar
  32. 32.
    Weber, C.R., and J.R. Turner. 2007. Inflammatory bowel disease: is it really just another break in the wall? Gut 56: 6–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Nataro, J.P., and J.B. Kaper. 1998. Diarrheagenic Escherichia coli. Clinical Microbiology Reviews 11: 142–201.PubMedGoogle Scholar
  34. 34.
    Chen, M.L., Z.M. Ge, J.G. Fox, and D.B. Schauer. 2006. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infection and Immunity 74: 6581–6589.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Qiang Zhang
    • 1
  • Qiurong Li
    • 1
    • 2
  • Chenyang Wang
    • 1
  • Ning Li
    • 1
  • Jieshou Li
    • 1
  1. 1.Department of Surgery, Jinling HospitalNanjing University School of MedicineNanjingPeople’s Republic of China
  2. 2.Research Institute of General SurgeryJinling HospitalNanjingPeople’s Republic of China

Personalised recommendations