Skip to main content
Log in

The Transcriptional Activation of the Cyclooxygenase-2 Gene in Zymosan-Activated Macrophages is Dependent on NF-Kappa B, C/EBP, AP-1, and CRE Sites

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Zymosan is a yeast cell wall particle that activates several cell lines, especially macrophages, resulting in the stimulated secretion of inflammatory products including tumor necrosis factor alpha (TNF-α) and arachidonic acid. Cyclooxygenase-2 (COX-2) is an immediate early gene induced by several stimuli in macrophages. The following research aimed to investigate the regions of COX-2 promoter gene that mediate the inductive effects of zymosan. Transient transfections with a series of COX-2 promoter–mutation constructs were performed to further elucidate the effects of zymosan on COX-2 transcription. Exposure to zymosan (50 μg/mL for 24 h) markedly enhanced the relative luciferase activity in RAW 264.7 macrophages (mouse leukemic monocyte macrophage cell line) transfected with COX-2 luciferase promoter constructs. Deletion on the CCAAT-enhancer binding protein (C/EBP) and nuclear factor kappa B (NF-kappa B) binding site resulted in an important decrease in reporter gene activity and a deletion of NF-kappa B and C/EBP with mutation of the cyclic adenosine monophosphate response element (CRE) and/or activator protein-1 totally abolished the reporter gene activity induced by zymosan. These findings provide further insight into the signal transduction pathways involved in COX-2 gene activated by zymosan in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Radi, Z.A., D.K. Meyerholz, and M.R. Ackermann. 2010. Pulmonary cyclooxygenase-1 (COX-1) and COX-2 cellular expression and distribution after respiratory syncytial virus and parainfluenza virus infection. Viral Immunol 23(1): 43–48.

    Article  PubMed  CAS  Google Scholar 

  2. Inoue, H., T. Nanayama, S. Hara, C. Yokoyama, and T. Tanabe. 1994. The cyclic AMP response element plays an essential role in the expression of the human prostaglandin-endoperoxide synthase 2 gene in differentiated U937 monocytic cells. FEBS Lett 350: 51–54.

    Article  PubMed  CAS  Google Scholar 

  3. Inoue, H., C. Yokoyama, S. Hara, Y. Tone, and T. Tanabe. 1995. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J Biol Chem 270: 24965–24971.

    Article  PubMed  CAS  Google Scholar 

  4. Mestre, J.R., K. Subbaramaiah, P.G. Sacks, S.P. Schantz, T. Tanabe, H. Inoue, and A.J. Dannenberg. 1997. Retinoids suppress phorbol ester-mediated induction of cyclooxygenase-2. Cancer Res 57: 1081–1085.

    PubMed  CAS  Google Scholar 

  5. Subbaramaiah, K., P.A. Cole, and A.J. Dannenberg. 2002. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res 62: 2522–2530.

    PubMed  CAS  Google Scholar 

  6. Spooren, A., R. Kooijman, B. Lintermans, K. Van Craenenbroeck, L. Vermeulen, G. Haegeman, and S. Gerlo. 2010. Cooperation of NF-kappaB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 22(5): 871–881.

    Article  PubMed  CAS  Google Scholar 

  7. Vallabhapurapu, S., and M. Karin. 2009. Regulation and function of NF-κB transcription factors in the immune system. Ann Rev Immunol 27: 693–733.

    Article  CAS  Google Scholar 

  8. Dimitrova, P., V. Gyurkovska, I. Shalova, L. Saso, and N. Ivanovska. 2009. Inhibition of zymosan-induced kidney dysfunction by tyrphostin AG-490. J Inflamm 6: 13.

    Article  Google Scholar 

  9. Underhill, D.M. 2003. Macrophage recognition of zymosan particles. J Endotoxin Res 9(3): 176–180.

    PubMed  CAS  Google Scholar 

  10. Goodridge, H.S., R.M. Simmons, and D.M. Underhill. 2007. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immun 178: 3107–3115.

    PubMed  CAS  Google Scholar 

  11. Volman, T.J.H., T. Hendriks, and R.J.A. Goris. 2005. Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 23(4): 291–297.

    Article  PubMed  CAS  Google Scholar 

  12. Ikeda, Y., Y. Adachi, K. Ishibashi, N. Miura, and N. Ohno. 2005. Activation of toll-like receptor-mediated NF-kappa B by zymosan-derived water-soluble fraction: possible contribution of endotoxin-like substances. Immunopharmacol Immunotoxicol 27(2): 285–298.

    Article  PubMed  CAS  Google Scholar 

  13. Wadleigh, D.J., S.T. Reddy, E. Kopp, S. Ghosh, and H.R. Herschman. 2000. Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macrophages. J Biol Chem 275: 6259–6266.

    Article  PubMed  CAS  Google Scholar 

  14. Han, E.H., J.H. Park, K.W. Kang, T.C. Jeong, H.S. Kim, and H.G. Jeong. 2009. Risk assessment of tetrabromobisphenol A on cyclooxygenase-2 expression via MAP kinase/NF-kappaB/AP-1 signaling pathways in murine macrophages. J Toxicol Environ Health 72(21–22): 1431–1438.

    Article  CAS  Google Scholar 

  15. Smith, W.L., D.L. DeWitt, and R.M. Garavito. 2000. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69: 145–182.

    Article  PubMed  CAS  Google Scholar 

  16. Chun, K.S., and Y.S. Surh. 2004. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 68(6): 1089–1100.

    Article  PubMed  CAS  Google Scholar 

  17. Gobin, S.J., P. Biesta, J.E. de Steenwinkel, G. Datema, and P.J. van den Elsen. 2002. HLA-G transactivation by cAMP-response element-binding protein (CREB). An alternative transactivation pathway to the conserved major histocompatibility complex (MHC) class I regulatory routes. J Biol Chem 277: 39525–39531.

    Article  PubMed  CAS  Google Scholar 

  18. Hsu, T.C., M.R. Young, J. Cmarik, and N.H. Colburn. 2000. Activator protein 1 (AP-1) and nuclear factor kappa B (NF-kappa B)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 28: 1338–1348.

    Article  PubMed  CAS  Google Scholar 

  19. Angel, P., and M. Karin. 1991. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129–157.

    PubMed  CAS  Google Scholar 

  20. Karin, M., Z. Liu, and E. Zandi. 1997. AP-1 function and regulation. Curr Opin Cell Biol 9: 240–246.

    Article  PubMed  CAS  Google Scholar 

  21. Pommery, N., and J.P. Hénichart. 2005. Involvement of PI3K/Akt pathway in prostate cancer-potential strategies for developing targeted therapies. Mini Rev Med Chem 5(12): 1125–1132.

    Article  PubMed  CAS  Google Scholar 

  22. Glinghammar, B., H. Inoue, and J.J. Rafter. 2002. Deoxycholic acid causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-kB and AP-1. Carcinogenesis 23(5): 839–845.

    Article  PubMed  CAS  Google Scholar 

  23. Janelle, M.E., A. Gravel, J. Gosselin, M.J. Tremblay, and L. Flamand. 2002. Activation of monocyte cyclooxygenase-2 gene expression by human herpes virus 6: role for cyclic AMP-responsive element-binding protein and activator protein-1. J Biol Chem 277: 30665–30674.

    Article  PubMed  CAS  Google Scholar 

  24. Okada, Y., O. Voznesensky, H. Herschman, J. Harrison, and C. Pilbeam. 2000. Identification of multiple cis-acting elements mediating the induction of prostaglandin G/H synthase-2 by phorbol ester in murine osteoblastic cells. J Cell Biochem 78: 197–209.

    Article  PubMed  CAS  Google Scholar 

  25. Ajubi, N.E., J. Klein-Nulend, M.J. Alblas, E.H. Burger, and P.J. Nijweide. 1999. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol Endocrinol Metab 276: E171–E178.

    CAS  Google Scholar 

  26. Woo, K.J., and T.K. Kwon. 2007. Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7(13): 1776–1783.

    Article  PubMed  CAS  Google Scholar 

  27. Gorgoni, B., M. Caivano, C. Arizmendi, and V. Poli. 2001. The transcription factor C/EBPbeta is essential for inducible expression of the COX-2 gene in macrophages but not in fibroblasts. J Biol Chem 276(44): 40769–40777.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from CAPES/DGU (BEX 4422/09-0)—Brazil, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge) and Secretaría de Estado de Universidades, Ministerio de Ciencia e Innovación (PHB2008-0080-PC)—Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarbas Rodrigues de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, R.C.V., Rico, M.A.P., Bartrons, R. et al. The Transcriptional Activation of the Cyclooxygenase-2 Gene in Zymosan-Activated Macrophages is Dependent on NF-Kappa B, C/EBP, AP-1, and CRE Sites. Inflammation 34, 653–658 (2011). https://doi.org/10.1007/s10753-010-9275-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9275-3

KEY WORDS

Navigation