Advertisement

Inflammation

, Volume 33, Issue 4, pp 276–280 | Cite as

Carbon Nanotubes Elicit DNA Damage and Inflammatory Response Relative to Their Size and Shape

  • Kohei Yamashita
  • Yasuo Yoshioka
  • Kazuma Higashisaka
  • Yuki Morishita
  • Tokuyuki Yoshida
  • Maho Fujimura
  • Hiroyuki Kayamuro
  • Hiromi Nabeshi
  • Takuya Yamashita
  • Kazuya Nagano
  • Yasuhiro Abe
  • Haruhiko Kamada
  • Yuichi Kawai
  • Tadanori Mayumi
  • Tomoaki Yoshikawa
  • Norio Itoh
  • Shin-ichi Tsunoda
  • Yasuo Tsutsumi
Article

Abstract

Carbon nanotubes (CNTs) have been one of the most extensively researched and developed nanomaterials. However, little concern has been placed on their safety. The biological effects of CNTs are believed to differ relative to size and shape. Thus, the relationship between the characteristics of CNTs and their safety needs to be evaluated. In this study, we examined the biological effects of different-sized multi-walled CNTs (MWCNTs) and single-walled CNTs (SWCNTs). Long and thick MWCNTs induced the strongest DNA damage while similar SWCNTs caused little effect. Comparison of inflammatory responses of various types of CNTs found that peritoneal CNT administration of long and thick MWCNTs increased the total cell number in abdominal lavage fluid in mice. These results indicate that long and thick MWCNT, but not short and thin MWCNT, cause DNA damage and severe inflammatory effects. These findings might provide useful information for constructing novel CNTs with safety.

KEY WORDS

carbon nanotubes cytotoxicity DNA damage inflammation nanomaterial 

Notes

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and from the Japan Society for the Promotion of Science (JSPS). This study was also supported in part by Health Labor Sciences Research Grants from the Ministry of Health, Labor, and Welfare of Japan; by Health Sciences Research Grants for Research on Health Sciences focusing on Drug Innovation from the Japan Health Sciences Foundation; by a Grant from the Minister of the Environment; and by The Nagai Foundation Tokyo.

References

  1. 1.
    Sternand, S.T., and S.E. McNeil. 2008. Nanotechnology safety concerns revisited. Toxicol Sci 101: 4–21.CrossRefGoogle Scholar
  2. 2.
    Lacerda, L., A. Bianco, M. Prato, and K. Kostarelos. 2006. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv Drug Deliv Rev 58: 1460–1470.CrossRefPubMedGoogle Scholar
  3. 3.
    Tran, P., L. Zhang, and T.J. Webster. 2009. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61: 1097–1114.CrossRefPubMedGoogle Scholar
  4. 4.
    Donaldson, K., R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander. 2006. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92: 5–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Maynard, A.D. 2007. Nanotechnology: The next big thing, or much ado about nothing? Ann Occup Hyg 51: 1–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaneand, A.B., and R.H. Hurt. 2008. Nanotoxicology: The asbestos analogy revisited. Nat Nanotechnol 3: 378–379.Google Scholar
  7. 7.
    Shvedova, A.A., E.R. Kisin, D. Porter, P. Schulte, V.E. Kagan, B. Fadeel, and V. Castranova. 2009. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol Ther 121: 192–204.CrossRefPubMedGoogle Scholar
  8. 8.
    Poland, C.A., R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3: 423–428.CrossRefPubMedGoogle Scholar
  9. 9.
    Takagi, A., A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, and J. Kanno. 2008. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33: 105–116.CrossRefPubMedGoogle Scholar
  10. 10.
    Sakamoto, Y., D. Nakae, N. Fukumori, K. Tayama, A. Maekawa, K. Imai, A. Hirose, T. Nishimura, N. Ohashi, and A. Ogata. 2009. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34: 65–76.CrossRefPubMedGoogle Scholar
  11. 11.
    Shibata, H., Y. Yoshioka, A. Ohkawa, K. Minowa, Y. Mukai, Y. Abe, M. Taniai, T. Nomura, H. Kayamuro, H. Nabeshi, T. Sugita, S. Imai, K. Nagano, T. Yoshikawa, T. Fujita, S. Nakagawa, A. Yamamoto, T. Ohta, T. Hayakawa, T. Mayumi, P. Vandenabeele, B.B. Aggarwal, T. Nakamura, Y. Yamagata, S. Tsunoda, H. Kamada, and Y. Tsutsumi. 2008. Creation and X-ray structure analysis of the tumor necrosis factor receptor-1-selective mutant of a tumor necrosis factor-alpha antagonist. J Biol Chem 283: 998–1007.CrossRefPubMedGoogle Scholar
  12. 12.
    Maynard, S., S.H. Schurman, C. Harboe, N.C. de Souza-Pinto, and V.A. Bohr. 2009. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30: 2–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Mossmanand, B.T., and A. Churg. 1998. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157: 1666–1680.Google Scholar
  14. 14.
    Kampand, D.W., and S.A. Weitzman. 1999. The molecular basis of asbestos induced lung injury. Thorax 54: 638–652.CrossRefGoogle Scholar
  15. 15.
    Pollard, J.W. 2004. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Clevers, H. 2004. At the crossroads of inflammation and cancer. Cell 118: 671–674.CrossRefPubMedGoogle Scholar
  17. 17.
    Krelin, Y., E. Voronov, S. Dotan, M. Elkabets, E. Reich, M. Fogel, M. Huszar, Y. Iwakura, S. Segal, C.A. Dinarello, and R.N. Apte. 2007. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 67: 1062–1071.CrossRefPubMedGoogle Scholar
  18. 18.
    Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674–677.CrossRefPubMedGoogle Scholar
  19. 19.
    Cassel, S.L., S.C. Eisenbarth, S.S. Iyer, J.J. Sadler, O.R. Colegio, L.A. Tephly, A.B. Carter, P.B. Rothman, R.A. Flavell, and F.S. Sutterwala. 2008. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105: 9035–9040.CrossRefPubMedGoogle Scholar
  20. 20.
    Mantovani, A., P. Allavena, A. Sica, and F. Balkwill. 2008. Cancer-related inflammation. Nature 454: 436–444.CrossRefPubMedGoogle Scholar
  21. 21.
    Grivennikov, S.I., and M. Karin. 2009. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev. doi: 10.1016/j.gde.2009.11.004.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kohei Yamashita
    • 1
    • 2
  • Yasuo Yoshioka
    • 1
    • 2
    • 3
  • Kazuma Higashisaka
    • 1
    • 2
  • Yuki Morishita
    • 1
    • 2
  • Tokuyuki Yoshida
    • 1
    • 2
  • Maho Fujimura
    • 1
    • 2
  • Hiroyuki Kayamuro
    • 1
    • 2
  • Hiromi Nabeshi
    • 1
    • 2
  • Takuya Yamashita
    • 1
    • 2
  • Kazuya Nagano
    • 2
  • Yasuhiro Abe
    • 2
  • Haruhiko Kamada
    • 2
    • 3
  • Yuichi Kawai
    • 4
  • Tadanori Mayumi
    • 4
  • Tomoaki Yoshikawa
    • 1
    • 2
  • Norio Itoh
    • 1
  • Shin-ichi Tsunoda
    • 1
    • 2
    • 3
  • Yasuo Tsutsumi
    • 1
    • 2
    • 3
  1. 1.Department of Toxicology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
  2. 2.Laboratory of Pharmaceutical ProteomicsNational Institute of Biomedical Innovation (NiBio)IbarakiJapan
  3. 3.The Center for Advanced Medical Engineering and InformaticsOsaka UniversitySuitaJapan
  4. 4.Graduate School of Pharmaceutical SciencesKobegakuin UniversityKobeJapan

Personalised recommendations