, Volume 33, Issue 1, pp 18–24 | Cite as

Protective Effects of Isolated Polyphenolic and Alkaloid Fractions of Ruta graveolens L. on Acute and Chronic Models of Inflammation



Ruta graveolens L. (Rutaceae) are traditionally used for the treatment of rheumatism, arthritis and other inflammatory conditions in the traditional medicine of India, were evaluated for their protective effect in acute and chronic models of inflammation. Carrageenan induced rat paw edema and adjuvant induced arthritis were employed as the experimental models of acute and chronic inflammation respectively. Isolated polyphenolic and alkaloid fraction (AFR) from Ruta graveolens and evaluated its anti inflammatory activity in carrageenan induced acute model. AFR with a dose 10 mg/kg showed higher anti inflammatory effect than polyphenols and standard drug diclofenec. AFR significantly decreased the paw edema in arthritic rats. TBARS, COX-2, 5-LOX and MPO level were decreased and the levels of antioxidant enzymes and GSH level were increased on treatment with AFR. The increment in CRP level and ceruloplasmin level observed in arthritic animals were also found to be significantly restored in AFR treated rats. The results demonstrated the potential beneficiary effect of isolated polyphenolic and alkaloid fraction of Ruta graveolens L. on acute and chronic models of inflammation in rats.


cycloxygenase-2 5-lipoxygenase oxidative stress myeloperoxidase arthritis 



Financial assistance from UGC in the form of RGNF is gratefully acknowledged. We express gratitude to Dr. Suja Mary Koshy, Veterinary Doctor, Department of Biochemistry, Kariavattom for helping us with the animal experiments.


  1. 1.
    Serhan, C. N., and B. Levy. 2003. Success of prostaglandin E2 in structure–function is a challenge for structure-based therapeutics. Proc. Natl. Acad. Sci. 100:8609–8611.CrossRefPubMedGoogle Scholar
  2. 2.
    Goulet, J. L., J. N. Snouweart, A. M. Latour, and T. M. Coffman. 1994. Altered inflammatory responses in leukotriene-deficient mice. Proc. Natl. Acad. Sci. 91:12852–12856.CrossRefPubMedGoogle Scholar
  3. 3.
    Davies, N. M., J. Y. Saleh, and N. M. Skjodt. 2000. Detection and prevention of NSAID-induced enteropathy. J. Pharm. Pharm. Sci. 3:137–155.PubMedGoogle Scholar
  4. 4.
    James, M. W., and C. J. Hawkey. 2003. Assessment of non-steroidal anti-inflammatory drug (NSAID) damage in the human gastrointestinal tract. Br. J. Clin. Pharmacol. 56:146–155.CrossRefPubMedGoogle Scholar
  5. 5.
    Bermond, P. 1989. Analgesic and antiinflammatory properties of vitamins. Int. J. Vitam. Nutr. Re. 30:153–160.Google Scholar
  6. 6.
    Bauer, B. A. 2000. Herbal therapy: what a clinician needs to know to counsel patients effectively. Mayo Clin. Proc. 75:835–841.CrossRefPubMedGoogle Scholar
  7. 7.
    Conway, G. A., and J. C. Slocumb. 1979. Plants used as abortifacients and emmenagogues by Spanish New Mexicans. J. Ethnopharmacol. 1:241–261.PubMedGoogle Scholar
  8. 8.
    Miguel, E. S. 2003. Rue (Ruta L., Rutaceae) in traditional Spain: frequency and distribution of its medicinal and symbolic applications. Econ. Bot. 57:231–244.CrossRefGoogle Scholar
  9. 9.
    Kuzovkina, I., I. Al’terman, and B. Schneider. 2004. Specific accumulation and revised structures of acridone alkaloid glucosides in the tips of transformed roots of Ruta graveolens. Phytochemistry. 65:1095–100.CrossRefPubMedGoogle Scholar
  10. 10.
    Harborne, J. B. 1973. Phytochemical methods. Chapman and Hall, London, pp. 11–21.Google Scholar
  11. 11.
    Winter, C. A., E. A. Risley, and G. W. Nuss. 1962. Carrageenan-induced oedema in the hind paw of rat as an assay for anti-inflammatory activity. Proc. Soc. Exp. Biol. Med. 111:544–547.PubMedGoogle Scholar
  12. 12.
    Campo, G. M., A. Angela, S. Campo, A. M. Ferlazzo, D. Altavilla, and A. Calatroni. 2003. Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats. Arthritis Res. Ther. 5:122–131.CrossRefGoogle Scholar
  13. 13.
    Radhika, A., S. S. Jacob, and P. R. Sudhakaran. 2007. Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol. Cell Biochem. 305:133–143.CrossRefPubMedGoogle Scholar
  14. 14.
    Axelrod, B., T. M. Cheesebrough, and S. Laakso. 1981. Lipoxygenase from soybean. Methods Enzymol. 71:441–445.CrossRefGoogle Scholar
  15. 15.
    Mullane, K. M., R. Kraemer, and B. Smith. 1985. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischaemic myocardium. J. pharmacol. Methods. 14:157–167.CrossRefPubMedGoogle Scholar
  16. 16.
    Ravin, H. A. 1961. An improved colorimetric enzymatic assay of ceruloplasmin. J. Lab. Clin. Med. 58:161–168.PubMedGoogle Scholar
  17. 17.
    Ohkawa, H., N. Oshishi, and K. Yag. 1979. Assay of lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal. Biochem. 95:351–358.CrossRefPubMedGoogle Scholar
  18. 18.
    Kakkar, P., B. Das, and P. N. Viswanathan. 1984. Modified spectrophotometric assay of SOD. Ind. J. Biochem. Biophys. 2:130–132.Google Scholar
  19. 19.
    Takahara, S., B. H. Hamilton, J. V. Nell, Y. Ogura, and E. T. Nishimura. 1960. Hypocatalasemia, a new genetic carrier states. J. Clin. Invest. 29:610–619.CrossRefGoogle Scholar
  20. 20.
    Rotruck, J. T., A. L. Pope, H. E. Gasther, D. G. Hafeman, and W. G. Hoekstra. 1973. Selenium-biochemical role as a component of glutathione peroxidase. Science. 179:588–590.CrossRefPubMedGoogle Scholar
  21. 21.
    Ellman, G. L. 1959. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82:70–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Firestein, G. S. 2003. Evolving concepts of rheumatoid arthritis. Nature. 423:356–361.CrossRefPubMedGoogle Scholar
  23. 23.
    Narayana Raju, K. V. S., R. Meera, J. Jayasekaran Samuel, S. Jayasundar, and R. Puvanakrishnan. 1999. Restandardization of adjuvant-induced arthritis in rats: Biochemical, radiological and histopathological characterization. Biomed. Lett. 60:173–182.Google Scholar
  24. 24.
    Pearson, C. M. 1963. Experimental joint disease observations on adjuvant-induced arthritis. J. Chronic Dis. 16:863–874.CrossRefPubMedGoogle Scholar
  25. 25.
    Griswold, D. E., and J. L. Adams. 1996. Constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2): rationale for selective inhibition and progress to date. Med. Res. Rev. . 16:181−186.CrossRefGoogle Scholar
  26. 26.
    Pepys, M. B., and G. M. Hirschfield. 2003. C-reactive protein: a critical update. J. Clin. Invest. 111:1805–1812.PubMedGoogle Scholar
  27. 27.
    Kushner, I. 1991. C-reactive protein in rheumatology. Arthritis Rheum. 34:1065–1068.CrossRefPubMedGoogle Scholar
  28. 28.
    Salvemini, D., Z. Q. Wang, P. S. Wyatt, D. M. Bourdon, M. H. Marring, and P. T. Manning. 1996. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paws inflammation. Br. J. Pharmacol. 118:829−838.PubMedGoogle Scholar
  29. 29.
    Nicotera, P., and S. Orrenius. 1986. Role of thiols in protection against biological reactive intermediates. Adv. Exp. Med. Biol. 187:41–51.Google Scholar
  30. 30.
    Kizilntuc, A., S. Cogalgil, and L. Cerrahoglu. 1998. Carnitine and antioxidants levels in patients with rheumatoid arthritis. Scand. J. Rheumatol. 27:441–445.CrossRefGoogle Scholar
  31. 31.
    Hassan, M. Q., R. A. Hadi, Z. S. Al-Rawi, V. A. Padron, and S. J. Stohs. 2001. The glutathione defense system in the pathogenesis of rheumatoid arthritis. J. Appl. Toxicol. 21:69–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Gambhir, J. K., P. Lali, and A. K. Jain. 1997. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin. Biochem. 30:351–355.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Ratheesh
    • 1
  • G. L. Shyni
    • 1
  • G. Sindhu
    • 1
  • A. Helen
    • 1
  1. 1.Department of BiochemistryUniversity of KeralaKariavattomIndia

Personalised recommendations