, 32:372 | Cite as

Nod2 Mutation Enhances NF-kappaB Activity and Bacterial Killing Activity of Macrophages

  • Tzyy-Bin Tsay
  • Chien-Jen Chang
  • Pei-Hsuan Chen
  • Ching-Mei Hsu
  • Lee-Wei Chen


NOD2, an intracellular sensor of bacteria, are linked to increased susceptibility to bacteria in Crohn’s disease (CD). The NOD2 protein is expressed mainly by macrophages and dendritic cells. This study is to examine the role of NOD2 in the innate response of macrophages to bacterial challenge. First, peritoneal macrophages and alveolar macrophages were harvested from WT, Nod22939iC, as well as TLR4−/− mice and incubated with E. coli or P. aeruginosa. Bacterial killing activity; IL-1β and TLR4 protein expression; NF-κB DNA binding activity assay; as well as IL-1β, TNFα, TLR2, TLR4 and TLR9 mRNA expression of macrophages were examined. We found that alveolar macrophages and peritoneal macrophages of Nod22939iC mice but not WT mice or TLR4−/− mice demonstrated a significant increase of E. coli killing activity. Bacterial challenge also induced a significant increase of pro-IL-1β protein expression; NF-κB DNA binding activity; as well as IL-1β and TNFα mRNA expression of the peritoneal macrophages in Nod22939iC mice. Collectively, the increase of bacterial killing activity, IL-1β expression, and NF-κB DNA binding activity of macrophages in Nod22939iC mice suggests that NOD2 is a positive regulator of NF-κB/IL-1β-mediated innate response to bacteria challenge in Crohn’s disease.


NOD2 IL-1β bacterial killing activity TNFα NF-κB phagocytic activity 



This work was supported by grants from National Science Council (NSC932314B075B005), Kaohsiung Veterans General Hospital (VGHNSU93-04, VGHKS93-94), National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, and VTY Joint Research Program, Tsou’s Foundation (VTY92-P3-19) to CLW. The authors have declared that no conflict of interest exists.


  1. 1.
    Hugot, J. P., M. Chamaillard, H. Zouali, S. Lesage, J. P. Cezard, J. Belaiche, S. Almer, C. Tysk, C. A. O’Morain, M. Gassull, et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603.CrossRefPubMedGoogle Scholar
  2. 2.
    Ogura, Y., D. K. Bonen, N. Inohara, D. L. Nicolae, F. F. Chen, R. Ramos, H. Britton, T. Moran, R. Karaliuskas, R. H. Duerr, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606.CrossRefPubMedGoogle Scholar
  3. 3.
    Girardin, S. E., I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne, G. Thomas, D. J. Philpott, and P. J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278(11):8869–8872.CrossRefPubMedGoogle Scholar
  4. 4.
    Hsu, L. C., S. R. Ali, S. McGillivray, P. H. Tseng, S. Mariathasan, E. W. Humke, L. Eckmann, J. J. Powell, V. Nizet, V. M. Dixit, et al. 2008. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl. Acad. Sci. U. S. A. 105(22):7803–7808.CrossRefPubMedGoogle Scholar
  5. 5.
    Traub, S., N. Kubasch, S. Morath, M. Kresse, T. Hartung, R. R. Schmidt, and C. Hermann. 2004. Structural requirements of synthetic muropeptides to synergize with lipopolysaccharide in cytokine induction. J. Biol. Chem. 279(10):8694–8700.CrossRefPubMedGoogle Scholar
  6. 6.
    Uehara, A., S. Yang, Y. Fujimoto, K. Fukase, S. Kusumoto, K. Shibata, S. Sugawara, and H. Takada. 2005. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol. 7(1):53–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Rothwarf, D. M., and M. Karin. 1999. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci. STKE. 1999(5):RE1.CrossRefPubMedGoogle Scholar
  8. 8.
    Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18:621–663.CrossRefPubMedGoogle Scholar
  9. 9.
    Gan, H. T., Y. Q. Chen, and Q. Ouyang. 2005. Sulfasalazine inhibits activation of nuclear factor-kappaB in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 20(7):1016–1024.PubMedGoogle Scholar
  10. 10.
    Maeda, S., L. C. Hsu, H. Liu, L. A. Bankston, M. Iimura, M. F. Kagnoff, L. Eckmann, and M. Karin. 2005. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738.CrossRefPubMedGoogle Scholar
  11. 11.
    Sayek, I. 1997. Animal models for intra-abdominal infection. Hepatogastroenterology 44(16):923–926.PubMedGoogle Scholar
  12. 12.
    van Westerloo, D. J., S. Weijer, M. J. Bruno, A. F. de Vos, C. Van’t Veer, and T. van der Poll. 2005. Toll-like receptor 4 deficiency and acute pancreatitis act similarly in reducing host defense during murine Escherichia coli peritonitis. Crit. Care Med. 33(5):1036–1043.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen, L. W., L. Egan, Z. W. Li, F. R. Greten, M. F. Kagnoff, and M. Karin. 2003. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9(5):575–581.CrossRefPubMedGoogle Scholar
  14. 14.
    Li, N., and M. Karin. 1998. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc. Natl. Acad. Sci. U. S. A. 95(22):13012–13017.CrossRefPubMedGoogle Scholar
  15. 15.
    Fiocchi, C. 1998. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115(1):182–205.CrossRefPubMedGoogle Scholar
  16. 16.
    Podolsky, D. K. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347(6):417–429.CrossRefPubMedGoogle Scholar
  17. 17.
    Wahl, C., S. Liptay, G. Adler, and R. M. Schmid. 1998. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J. Clin. Invest. 101(5):1163–1174.CrossRefPubMedGoogle Scholar
  18. 18.
    Hisamatsu, T., M. Suzuki, H. C. Reinecker, W. J. Nadeau, B. A. McCormick, and D. K. Podolsky. 2003. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4):993–1000.CrossRefPubMedGoogle Scholar
  19. 19.
    Watanabe, T., A. Kitani, P. J. Murray, and W. Strober. 2004. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5(8):800–808.CrossRefPubMedGoogle Scholar
  20. 20.
    Mahida, Y. R., and V. E. Rolfe. 2004. Host–bacterial interactions in inflammatory bowel disease. Clin. Sci. (Lond.). 107(4):331–341.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tzyy-Bin Tsay
    • 1
  • Chien-Jen Chang
    • 2
  • Pei-Hsuan Chen
    • 3
  • Ching-Mei Hsu
    • 4
  • Lee-Wei Chen
    • 2
    • 3
  1. 1.Department of SurgeryZuoying Armed Forces General HospitalKaohsiungTaiwan
  2. 2.Institute of Emergency and Critical Care MedicineNational Yang-Ming UniversityTaipeiTaiwan
  3. 3.Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
  4. 4.Department of Biological SciencesNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations