, Volume 31, Issue 5, pp 299–303 | Cite as

Adenosine A2A Receptor Blockade or Deletion Diminishes Fibrocyte Accumulation in the Skin in a Murine Model of Scleroderma, Bleomycin-induced Fibrosis

  • Majid Katebi
  • Patricia Fernandez
  • Edwin S. L. Chan
  • Bruce N. Cronstein


Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A2A receptor-deficient and A2A antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A2A receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A2A knockout and A2A antagonist-treated mice were stained for Procollagen α2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections. There were more fibrocytes in the dermis of bleomycin-treated mice than normal mice and the increase was abrogated by deletion or blockade of adenosine A2A receptors. Because fibrocytes play a central role in tissue fibrosis these results suggest that diminished adenosine A2A receptor-mediated recruitment of fibrocytes into tissue may play a role in the pathogenesis of fibrosing diseases of the skin. Moreover, these results provide further evidence that adenosine A2A receptors may represent a new target for the treatment of such fibrosing diseases as scleroderma or nephrogenic fibrosing dermopathy.


fibrocyte adenosine A2A receptor scleroderma 



adenosine A2A receptor knockout



This work was supported by grants from the National Institutes of Health (AR41911, AA13336, GM56268), the Scleroderma Foundation, King Pharmaceuticals, the General Clinical Research Center (M01RR00096) and by the Kaplan Cancer Center of New York University School of Medicine.


  1. 1.
    Dubey, R. K., D. G. Gillespie, and E. K. Jackson. 1998. Adenosine inhibits collagen and protein synthesis in cardiac fibroblasts: role of A2B receptors. Hypertension 31:943–948.PubMedGoogle Scholar
  2. 2.
    Chan, E. S., P. Fernandez, A. A. Merchant, M. C. Montesinos, S. Trzaska, A. Desai et al. 2006. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum. 54:2632–2642, doi: 10.1002/art.21974.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhong, H., L. Belardinelli, T. Maa, and D. Zeng. 2005. Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am. J. Respir. Cell. Mol. Biol. 32:2–8, doi: 10.1165/rcmb.2004-0103OC.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, Y., S. Epperson, L. Makhsudova, B. Ito, J. Suarez, W. Dillmann et al. 2004. Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 287:H2478–H2486, doi: 10.1152/ajpheart.00217.2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Murakami, S., T. Hashikawa, T. Saho, M. Takedachi, T. Nozaki, Y. Shimabukuro, et al. 2001. Adenosine regulates the IL-1 beta-induced cellular functions of human gingival fibroblasts. Int. Immunol. 13:1533–1540, doi: 10.1093/intimm/13.12.1533.PubMedCrossRefGoogle Scholar
  6. 6.
    Dubey, R. K., D. G. Gillespie, L. C. Zacharia, Z. Mi, and E. K. Jackson. 2001. A(2b) receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension 37:716–721.PubMedGoogle Scholar
  7. 7.
    Murakami, S., M. Terakura, T. Kamatani, T. Hashikawa, T. Saho, Y. Shimabukuro et al. 2000. Adenosine regulates the production of interleukin-6 by human gingival fibroblasts via cyclic AMP/protein kinase A pathway. J. Periodontal. Res. 35:93–101, doi: 10.1034/j.1600-0765.2000.035002093.x.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan, E. S., M. C. Montesinos, P. Fernandez, A. Desai, D. L. Delano, H. Yee et al. 2006. Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br. J. Pharmacol. 148:1144–1155, doi: 10.1038/sj.bjp.0706812.PubMedCrossRefGoogle Scholar
  9. 9.
    Che, J., E. S. Chan, and B. N. Cronstein. 2007. Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol. Pharmacol. 72:1626–1636, doi: 10.1124/mol.107.03876.PubMedCrossRefGoogle Scholar
  10. 10.
    Hashmi, A. Z., W. Hakim, E. A. Kruglov, A. Watanabe, W. Watkins, J. A. Dranoff, et al. 2007. Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G395–G401, doi: 10.1152/ajpgi.00208.2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Montesinos, M. C., P. Gadangi, M. Longaker, J. Sung, J. Levine, D. Nilsen, et al. 1997. Wound healing is accelerated by agonists of adenosine A2 (G alpha s-linked) receptors. J. Exp. Med. 186:1615–1620, doi: 10.1084/jem.186.9.1615.PubMedCrossRefGoogle Scholar
  12. 12.
    Blackburn, M. R., C. G. Lee, H. W. Young, Z. Zhu, J. L. Chunn, M. J. Kang et al. 2003. Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. J. Clin. Invest. 112:332–344.PubMedGoogle Scholar
  13. 13.
    Sun, C. X., H. Zhong, A. Mohsenin, E. Morschl, J. L. Chunn, J. G. Molina, et al. 2006. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J. Clin. Invest. 116:2173–2182, doi: 10.1172/JCI27303.PubMedCrossRefGoogle Scholar
  14. 14.
    Ma, B., M. R. Blackburn, C. G. Lee, R. J. Homer, W. Liu, R. A. Flavell, et al. 2006. Adenosine metabolism and murine strain-specific IL-4-induced inflammation, emphysema, and fibrosis. J. Clin. Invest. 116:1274–1283, doi: 10.1172/JCI26372.PubMedCrossRefGoogle Scholar
  15. 15.
    Chunn, J. L., A. Mohsenin, H. W. Young, C. G. Lee, J. A. Elias, R. E. Kellems et al. 2006. Partially adenosine deaminase-deficient mice develop pulmonary fibrosis in association with adenosine elevations. Am. J. Physiol. Lung Cell Mol. Physiol. 290:L579–L587, doi: 10.1152/ajplung.00258.2005.PubMedCrossRefGoogle Scholar
  16. 16.
    Chunn, J. L., J. G. Molina, T. Mi, Y. Xia, R. E. Kellems, and M. R. Blackburn. 2005. Adenosine-dependent pulmonary fibrosis in adenosine deaminase-deficient mice. J. Immunol. 175:1937–1946.PubMedGoogle Scholar
  17. 17.
    Bellini, A., and S. Mattoli. 2007. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab. Invest. 87:858–870, doi: 10.1038/labinvest.3700654.PubMedCrossRefGoogle Scholar
  18. 18.
    Quan, T. E., S. E. Cowper, and R. Bucala. 2006. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 8:145–150, doi: 10.1007/s11926-006-0055-x.PubMedCrossRefGoogle Scholar
  19. 19.
    Quan, T. E., S. Cowper, S. P. Wu, L. K. Bockenstedt, and R. Bucala. 2004. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell. Biol. 36:598–606, doi: 10.1016/j.biocel.2003.10.005.PubMedCrossRefGoogle Scholar
  20. 20.
    Pilling, D., D. Roife, M. Wang, S. D. Ronkainen, J. R. Crawford, E. L. Travis, et al. 2007. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J. Immunol. 179:4035–4044.PubMedGoogle Scholar
  21. 21.
    Ishida, Y., A. Kimura, T. Kondo, T. Hayashi, M. Ueno, N. Takakura, et al. 2007. Essential roles of the CC chemokine ligand 3-CC chemokine receptor 5 axis in bleomycin-induced pulmonary fibrosis through regulation of macrophage and fibrocyte infiltration. Am. J. Pathol. 170:843–854 doi: 10.2353/ajpath.2007.051213.PubMedCrossRefGoogle Scholar
  22. 22.
    Boban, I., T. Barisic-Dujmovic, and S. H. Clark. 2008. Parabiosis and transplantation models show no evidence of circulating dermal fibroblast progenitors in bleomycin-induced skin fibrosis. J. Cell. Physiol. 214:230–237, doi: 10.1002/jcp.21182.PubMedCrossRefGoogle Scholar
  23. 23.
    Victor-Vega, C., A. Desai, M. Montesinos, and B. Cronstein. 2002. Adenosine A2A agonists promote more rapid wound healing than recombinant human platelet derived growth factor (PDGF). Inflammation 26:19–24, doi: 10.1023/A:1014417728325.PubMedCrossRefGoogle Scholar
  24. 24.
    Montesinos, M., J. F. Chen, A. Desai, H. Yee, M. Jacobson, M. Schwarzschild, et al. 2002. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A2A receptors. Am. J. Pathol. 160:2000–2009.Google Scholar
  25. 25.
    Montesinos, M. C., J. P. Shaw, H. Yee, P. Shamamian, and B. N. Cronstein. 2004. Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am. J. Pathol. 164:1887–1892.PubMedGoogle Scholar
  26. 26.
    Desai, A., C. Victor-Vega, S. Gadangi, M. C. Montesinos, C. C. Chu, and B. N. Cronstein. 2005. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol. Pharmacol. 67:1406–1413, doi: 10.1124/mol.104.007807.PubMedCrossRefGoogle Scholar
  27. 27.
    Khoa, N. D., C. M. Montesinos, A. J. Williams, M. Kelly, and B. N. Cronstein. 2003. Th1 cytokines regulate adenosine receptors and their downstream signalling elements in human microvascular endothelial cells. J. Immunol. 171:3991–3998.Google Scholar
  28. 28.
    Bucala, R., L. A. Spiegel, J. Chesney, M. Hogan, and A. Cerami. 1994. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1:71–81.PubMedGoogle Scholar
  29. 29.
    Abe, R., S. C. Donnelly, T. Peng, R. Bucala, and C. N. Metz. 2001. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166:7556–7562.PubMedGoogle Scholar
  30. 30.
    Phillips, R. J., M. D. Burdick, K. Hong, M. A. Lutz, L. A. Murray, Y. Y. Xue et al. 2004. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114:438–446.PubMedGoogle Scholar
  31. 31.
    Richard, C. L., E. Y. Tan, and J. Blay. 2006. Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int. J. Cancer 119:2044–2053, doi: 10.1002/ijc.22084.PubMedCrossRefGoogle Scholar
  32. 32.
    Leibovich, S., J. F. Chen, P. Belem, G. Elson, A. Rosania, M. Ramanathan, et al. 2002. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in murine macrophages by adenosine A2A receptor agonists and endotoxin. Am. J. Pathol. 160:2231–2244.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Majid Katebi
    • 1
  • Patricia Fernandez
    • 1
  • Edwin S. L. Chan
    • 1
  • Bruce N. Cronstein
    • 1
  1. 1.Divisions of Clinical Pharmacology and Rheumatology, Department of MedicineNew York University School of MedicineNew YorkUSA

Personalised recommendations