, Volume 31, Issue 4, pp 273–280 | Cite as

Effects of Caffeic Acid Phenethyl Ester (CAPE) on Sepsis in Rats

  • Ahmet Tekin
  • Tevfik Küçükkartallar
  • Serdar Türkyılmaz
  • Ayhan Dinckan
  • Hasan Esen
  • Burhan Ateş
  • Hüseyin Yılmaz
  • Adil Kartal


Sepsis is still a major cause of the high mortality rate in the intensive care unit. Many studies have been published about the severity of sepsis, but the cause of mortality in sepsis and multiorgan failure is still obscure. This study investigated the effects of caffeic acid phenethyl ester (CAPE) particularly on the inflammatory and related histopathological changes in the lung, liver and kidney in an experimental sepsis model. Forty Sprague Dawley rats were used in this study, and were divided into four groups of ten rats each, as follows: Group I was given intraperitoneal saline infusion treatment. Group II was given intraperitoneal CAPE infusion treatment. Sepsis was induced in the animals in Group III (sepsis with saline infusion), while Group IV rats underwent induced sepsis plus CAPE infusion treatment (sepsis with CAPE infusion). Sampling was performed 48 h after treatment. The induction of sepsis resulted in a significant increase in serum glucose, leukocytes, urea, creatinine, LDH levels in BAL, plasma MDA, AST and ALT levels in the sepsis + saline group. The use of CAPE significantly decreased these parameters. Histopathological examination revealed less congestion, portal inflammation, and focal necrosis of the liver, and less congestion, edema, and emphysematous and inflammatory changes in the lung in the sepsis + CAPE group than in the other groups. These results support that CAPE may be used for the treatment of organ failure during sepsis.


sepsis rats treatment CAPE 



The authors thank Dr. Fatih Kara for his excellent help in reviewing our statistical analysis.


  1. 1.
    Alberti, C., C. Brun-Buisson, H. Burchardi, et al. 2002. Epidemiology of sepsis and infection in ICU patients from an international multicenter cohort study. Intensive Care Med. 28:108–121.PubMedCrossRefGoogle Scholar
  2. 2.
    Kirkeboen, K. A., and O. A. Strand. 1999. The role of nitric oxide in sepsis—an overview. Acta Anesthesiol. Scand. 43:275–288.CrossRefGoogle Scholar
  3. 3.
    O’Reilly, M., D. E. Newcomb, and D. Remick. 1999. Endo-toxin, sepsis, and the primrose path. Shock 12:411–420.PubMedCrossRefGoogle Scholar
  4. 4.
    Schröder, J., V. Khalke, K. H. Staubach, et al. 1998. Gender differences in human sepsis. Arch. Surg. 133:1200–1205.PubMedCrossRefGoogle Scholar
  5. 5.
    Fiorentino, D., A. Zlotnik, T. Mosmann, et al. 1991. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147:3815–3822.PubMedGoogle Scholar
  6. 6.
    Remick, D. G., G. R. Bolgos, J. Siddiqui, et al. 2002. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 17:463–467.PubMedCrossRefGoogle Scholar
  7. 7.
    Tate, R. M., H. G. Morris, W. R. Schroeder, et al. 1984. Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lung. J. Clin. Invest. 74:608.PubMedCrossRefGoogle Scholar
  8. 8.
    Hotter, G., D. Closa, N. Prats, et al. 1997. Free radical enhancement promotes leukocytes recruitment through a PAF and LTB4 dependent mechanism. Free Radic. Biol. Med. 22:947–954.PubMedCrossRefGoogle Scholar
  9. 9.
    İlhan, A., Ö. Akyol, A. Gürel, et al. 2004. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Free Radic. Biol. Med. 37:386–394.PubMedCrossRefGoogle Scholar
  10. 10.
    Ozyurt, H., B. Ozyurt, K. Koca, et al. 2007. Caffeic acid phenethyl ester (CAPE) protects rat skeletal muscle against ischemia-reperfusion-induced oxidative stress. Vascul. Pharmacol. 47(2–3):108–112, Aug–Sep.PubMedCrossRefGoogle Scholar
  11. 11.
    Turkyilmaz, S., E. Alhan, C. Ercin, et al. 2008. Effects of caffeic acid phenethyl ester on pancreatitis in rats. J. Surg. Res. 145(1):19–24. Epub 2007 Oct 29, Mar.PubMedCrossRefGoogle Scholar
  12. 12.
    Song, Y. S., E. H. Park, G. M. Hur, et al. 2002. Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Lett. 175:53–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Correa, P. B., J. A. Pancoto, G. R. de Oliveira-Pelegrin, et al. 2007. Participation of iNOS-derived NO in hypothalamic activation and vasopressin release during polymicrobial sepsis. J. Neuroimmunol. 183:17–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Nose, K., M. Wasa, and A. Okada. 2002. Gut glutamine metabolism at different stages of sepsis in rats. Surg. Today 32:695–700.PubMedCrossRefGoogle Scholar
  15. 15.
    Yılmaz, H. R., E. Uz, N. Yücel, et al. 2004. Protective effect of caffeic acid phenetyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J. Biochem. Mol. Toxicol. 18:234–238.PubMedCrossRefGoogle Scholar
  16. 16.
    Aydoğdu, N., G. Atmaca, Ö. Yalçın, et al. 2004. Effects of caffeic acid phenethyl ester on glycerol-induced acute renal failure in rats. Clin. Experimental. Pharmacol. Physiol. 31:575–579.CrossRefGoogle Scholar
  17. 17.
    Yağmurca, M., H. Erdoğan, M. Iraz, et al. 2004. Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats. Clin. Chim. Acta. 348(1–2):27–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Sookhai, S., J. J. Wang, M. McCourt, et al. 2002. A novel therapeutic strategy for attenuating neutrophil-mediated lung injury in vivo. Ann. Surg. 235(2):285–291.PubMedCrossRefGoogle Scholar
  19. 19.
    Sahna, E., H. Parlakpinar, F. Ozturk, et al. 2003. The protective effects of physiological and pharmacological concentrations of melatonin on renal ischemia-reperfusion injury in rats. Urol. Res. 31:188–193.PubMedCrossRefGoogle Scholar
  20. 20.
    Ozveri, E. S., A. Bozkurt, G. Haklar, et al. 2001. Estrogens ameliorate remote organ inflammation induced by burn injury in rats. Inflamm. Res. 50:585–591.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu, M., D. Shao, R. Yang, et al. 2007. Effects of ketamine on pulmonary inflammatory responses and survival in rats exposed to polymicrobial sepsis. J. Pharm. Pharmaceut. Sci. 10:434–442.Google Scholar
  22. 22.
    Erikoğlu, M., M. Sahin, S. Ozer, et al. 2005. Effects of gender on the severity of sepsis. Surg. Today 35:467–472.PubMedCrossRefGoogle Scholar
  23. 23.
    Bohles, H. 1997. Antioxidative vitamins in prematurely and maturely born infants. Int. J. Vit. Nutr. Res. 67:321–328.Google Scholar
  24. 24.
    Heller, A. R., G. Groth, S. C. Heller, et al. 2001. N-Acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit. Care Med. 29:272–276.PubMedCrossRefGoogle Scholar
  25. 25.
    Grunberger, D., R. Banerjee, K. Eisinger, et al. 1988. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44:230–232.PubMedCrossRefGoogle Scholar
  26. 26.
    Sahin, O., O. Sulak, Y. Yavuz, et al. 2006. Lithium-induced lung toxicity in rats: the effect of caffeic acid phenethyl ester (CAPE). Pathology 38:58–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Su, Z. Z., D. Grunberger, and P. B. Fisher. 1991. Suppression of adenovirus type five EIA-mediated transformation and expression of the transformed phenotype by caffeic acid phenethyl ester (CAPE). Mol. Carcinog. 4:231–242.PubMedCrossRefGoogle Scholar
  28. 28.
    Hosnuter, M., A. Gurel, O. Babuccu, et al. 2004. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury. Burns 30:121–125.PubMedCrossRefGoogle Scholar
  29. 29.
    Sener, G., H. Toklu, C. Kapucu, et al. 2005. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg. Today. 35:52–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Brooks, H. F., C. K. Osabutey, R. F. Moss, et al. 2007. Caecal ligation and puncture in the rat mimics the pathophysiological changes in human sepsis and causes multi-organ dysfunction. Metab. Brain Dis. 22:353–373.PubMedCrossRefGoogle Scholar
  31. 31.
    Galley, H. F., M. J. Davies, and N. R. Webster. 1996. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit. Care Med. 24:1649–1653.PubMedCrossRefGoogle Scholar
  32. 32.
    Irmak, M. K., E. Fadillioglu, M. Gulec, et al. 2002. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell. Biochem. Funct. 20:279–283.PubMedCrossRefGoogle Scholar
  33. 33.
    Draper, H. H., and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186:421–431.PubMedCrossRefGoogle Scholar
  34. 34.
    Razavi, H. M., R. Werhun, J. A. Scott, et al. 2002. Effects of inhaled nitric oxide in a mouse model of sepsis-induced acute lung injury. Crit. Care Med. 30:868–873.PubMedCrossRefGoogle Scholar
  35. 35.
    Akyol, A., H. Ulusoy, M. Imamoglu, et al. 2006. Does propofol or caffeic acid phenethyl ester prevent lung injury after hindlimb ischaemia-reperfusion in ventilated rats? Injury 37:380–387.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen, M. F., P. C. Keng, P. Y. Lin, et al. 2005. Caffeic acid phenethyl ester decreases acute pneumonitis after irradition in vitro and in vivo. BMC Cancer 5:158, Dec 9.PubMedCrossRefGoogle Scholar
  37. 37.
    Koksel, O., A. Ozdülger, L. Tamer, et al. 2006. Effects of caffeic acid phenethyl ester on lipopolysaccharide induced lung injury in rats. Pulm. Pharmacol. Ther. 19:90–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Ates, B., M. I. Doğru, M. Gül, et al. 2006. Protective role of caffeic acid phenethyl ester in the liver of rats exposed to cold stress. Fundam. Clin. Pharmacol. 20:283–289.PubMedCrossRefGoogle Scholar
  39. 39.
    Iraz, M., E. Ozerol, M. Gulec, et al. 2006. Protective effect of caffeic acid phenethyl ester administration on cisplatin-induced oxidative damage to liver in rat. Cell. Biochem. Funct. 24:357–361.PubMedCrossRefGoogle Scholar
  40. 40.
    Yılmaz, H. R., E. Uz, N. Yucel, et al. 2004. Protective effect of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J. Biochem. Mol. Toxicol. 18:234–238.PubMedCrossRefGoogle Scholar
  41. 41.
    Kuş, I., N. Colakoğlu, H. Pekmez, et al. 2004. Protective effects of caffeic acid phenethyl ester on carbon tetrachloride-induced hepatotoxicity in rats. Acta Histochem. 106:289–297.PubMedGoogle Scholar
  42. 42.
    Uz, E., F. Öktem, H. R. Yılmaz, et al. 2005. The activities of purine-catabolizing enzymes and the level of nitric oxide in rat kidneys subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Mol. Cell. Biochem. 277:165–170.PubMedCrossRefGoogle Scholar
  43. 43.
    Oktem, F., F. Ozguner, O. Sulak, et al. 2005. Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Mol. Cell. Biochem. 277:109–115.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ahmet Tekin
    • 1
    • 7
  • Tevfik Küçükkartallar
    • 1
  • Serdar Türkyılmaz
    • 2
  • Ayhan Dinckan
    • 3
  • Hasan Esen
    • 4
  • Burhan Ateş
    • 5
  • Hüseyin Yılmaz
    • 6
  • Adil Kartal
    • 1
  1. 1.Meram Medical Faculty, Department of General SurgerySelcuk UniversityKonyaTurkey
  2. 2.Medical Faculty, Department of General SurgeryAkdeniz UniversityAntalyaTurkey
  3. 3.Medical Faculty, Department of General SurgeryKaradeniz Technical UniversityTrabzonTurkey
  4. 4.Meram Medical Faculty, Department of PathologySelcuk UniversityKonyaTurkey
  5. 5.Department of ChemistryInonu UniversityMalatyaTurkey
  6. 6.Department of General SurgeryPrivate Konya HospitalKonyaTurkey
  7. 7.Feritpaşa mah. Gökhan Sok. Mehmet Katırcı AptSelçukluTurkey

Personalised recommendations