Skip to main content
Log in

Systemic Administration of Olygodeoxynucleotides with CpG Motifs at Priming Phase Reduces Local Th2 Response and Late Allergic Rhinitis in BALB/c Mice

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Oligodeoxynucleotides (ODN) with CpG motifs (CpG ODN) induce T helper (Th)1-type reaction. We aimed to evaluate the therapeutic effect of CpG ODN in the development of late allergic rhinitis induced by ovalbumin (OVA), which is one of Th2 diseaes, in BALB/c mice. Effects of a single dose of synthetic CpG-ODN (50 μg) intraperitoneally (i.p.) at the priming phase (on day 0) by OVA on the development of late eosinophilic rhinitis at respiratory areas were compared to the control mice treated with its vehicle (ODN without CpG motifs; 50 μg). Animals were again sensitized by OVA (on day 10) i.p., and 4 days after second sensitization animals were challenged by OVA intranasally (on day 14). Four days after challenge, eosinophilic reactions, nasal lesions and local cytokine values were examined. Compared to the control group, the CpG ODN-administration increased production of OVA-specific Th1 cytokine (interferon-γ) and decreased productions of ovalubmin-specific Th2 cytokines [interleukin (IL)-5 and IL-13] in nasal cavity fluids, supernatants of splenocytes and/or sera. Also, eosinophilia and increased total IgE values were decreased in mice treated with the CpG ODN compared to the control group. Moreover, nasal lesions with infiltration of eosinophils were prominently reduced by the CpG ODN-treatment compared to the control mice. The present study suggests that the systemic administration of CpG ODN at the priming phase may reduce local OVA-specific Th2 responses, resulting in decreased nasal pathology in the late allergic eosinophilic rhinitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Strachan, D. P. 1989. Hay fever, hygiene and hosehold size. BMJ 299:1259–1260.

    Article  PubMed  CAS  Google Scholar 

  2. Von Hertzen, L. C., and T. Haahtela. 2004. Asthma and atopy–the price of affluence? Allergy 59:124–137.

    Article  Google Scholar 

  3. Galli, S. J. 1997. Complexity and redundancy in the pathogenesis of asthma: Reassessing the roles of mast cells and T cells. J. Exp. Med. 186:343–347.

    Article  PubMed  CAS  Google Scholar 

  4. O’Byrne, P. M., J. Dolovich, and F. E. Hargreave. 1987. Late asthmatic responses. Am. Rev. Respir. Dis. 136:740–751.

    PubMed  CAS  Google Scholar 

  5. Lei, H.-Y., K.-J. Huang, C.-L. Shen, and J.-L. Huang. 1989. An antigen-specific hypersensitivity which does not fit into traditional classification of hypersensitivity. J. Immunol. 143:432–438.

    PubMed  CAS  Google Scholar 

  6. Corrigan, C. J., Q. Hamid, J. North, J. Barkans, R. Moqbel, S. Durham, V. Gemou-Engesaeth, and A. B. Kay. 1995. Peripheral blood CD4 but not CD8 T-lymphocytes in patients with exacerbation of asthma transcribe and translate messenger RNA encoding cytokines which prolong eosinophil survival in the context of a Th2-type pattern: Effect of glucocorticoid therapy. Am. J. Respir. Cell Mol. Biol. 12:567–578.

    PubMed  CAS  Google Scholar 

  7. Kosgren, M., J. S. Erjefalt, O. Korsgren, F. Sundler, and C. G. Persson. 1997. Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice. J. Exp. Med. 185:885–893.

    Article  Google Scholar 

  8. Takeda, K., E. Hamelmann, A. Joetham, L. D. Shultz, G. L. Larsen, C. G. Irvin, and E. W. Gelfand. 1997. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J. Exp. Med. 186:449–454.

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi, T., Y. Adachi, K. Hasegawa, and M. Morimoto. 2003. Less sensitivity for late airway inflammation in males than females in BALB/c mice. Scand. J. Immunol. 57:562–567.

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi, T., A. Ishii, S. Nakai, and K. Hasegawa. 2004. Ultrastructure of goblet-cell metaplasia from clara cell in the allergic asthmatic airway inflammation in a mouse model of asthma in vivo. Virchows Arch. 444:66–73.

    Article  PubMed  Google Scholar 

  11. Roche, W. R., J. H. Williams, R. Beasley, and S. T. Holgate. 1989. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1:520–524.

    Article  PubMed  CAS  Google Scholar 

  12. Klimek, L., and G. Eggers. 1997. Olfactory dysfunction in allergic rhinitis is related to nasal eosinophilic inflammation. J. Allergy Clin. Immunol. 100:158–164.

    Article  PubMed  CAS  Google Scholar 

  13. Moll, B., L. Klimek, G. Eggers, and W. Mann. 1998. Comparison of olfactory function in patients with seasonal and perennial allergic rhinitis. Allergy 53:297–301.

    Article  PubMed  CAS  Google Scholar 

  14. Apter, A. J., J. F. Gent, and M. E. Frank. 1999. Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis. Arch. Otolaryngol. Head Neck Surg. 125:1005–1010.

    PubMed  CAS  Google Scholar 

  15. Baraniuk, J. N. 2001. Mechanisms of allergic rhinitis. Curr. Allergy Asthma Rep. 1:207–217.

    Article  PubMed  CAS  Google Scholar 

  16. Varney, V. A., M. R. Jacobson, R. M. Sudderic, D. S. Robinson, A. M. Irani, B. Schwartz, I. Macskay, A. B. Kay, and S. R. Durham. 1992. Immunohistology of the nasal mucosa following allergen-induced rhinitis. Identification of activated T lymphocytes, eosinophils, and neutrophils. Am. Rev. Respir. Dis. 146:170–176.

    PubMed  CAS  Google Scholar 

  17. Coyle, A. J., G. Le Gros, C. Bertrand, S. Tsuyuki, C. H. Heusser, M. Kope, and G. P. Anderson. 1995. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am. J. Respir. Cell Mol. Biol. 13:54–59.

    PubMed  CAS  Google Scholar 

  18. Kaneko, M., Y. Hitoshi, K. Takatsu, and S. Matsumoto. 1991. Role of interleukin-5 in local accumulation of eosinophils in mouse allergic peritonitis. Int. Arch. Allergy Appl. Immunol. 96:41–45.

    PubMed  CAS  Google Scholar 

  19. Zhu, Z., R. J. Horner, Z. Wang, Q. Chen, G. P. Geba, J. Wang, Y. Zhang, and J. A. Elias. 1999. Pulmonary expression of interleukin-13 cause inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities and eotaxin production. J. Clin. Invest. 103:779–788.

    Article  PubMed  CAS  Google Scholar 

  20. Klinman, D. M., A. K. Yi, S. L. Beaucage, J. Comover, and A. M. Krieg. 1996. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc. Natl. Acad. Sci. U. S. A. 93:2879–2883.

    Article  PubMed  CAS  Google Scholar 

  21. Pisetsky, D. S. 1996. Immune activation by bacterial DNA: A new genetic code. A review. Immunity 5:303–310.

    Article  PubMed  CAS  Google Scholar 

  22. Jacob, T., P. S. Walker, A. M. Krieg., M. C. Udey, and J. C. Vogel. 1998. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol. 161:3042–3049.

    Google Scholar 

  23. Sparwasser, T., E. S. Koch, R. M. Vabulas, K. Heeg, G. B. Lipfpord, J. W. Ellwart, and H. Wagner. 1998. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28:2045–2054.

    Article  PubMed  CAS  Google Scholar 

  24. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira. 2000. Toll-like receptor recognizes bacterial DNA. Nature 408:740–745.

    Article  PubMed  CAS  Google Scholar 

  25. Kranzer, K., M. Bauer, G. B. Lipford, K. Heeg, H. Wagner, and R. Lang. 2000. CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type and interleukin-12. Immunology 99:170–178.

    Article  PubMed  CAS  Google Scholar 

  26. Mosmann, T. R., and R. L. Coffman. 1989. Th1 and Th2 cells: different patterns of lymphokine secretion leads to different functional patterns. Annu. Rev. Immunol. 7:145–173.

    Article  PubMed  CAS  Google Scholar 

  27. Broide, D., J. Schwarze, H. Tighe, T. Gifford, M. D. Nguyen, S. Malek, J. van Uden, O. Martin, E. W. Gelfand, and E. Raz. 1998. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J. Immunol. 161:7054–7062.

    PubMed  CAS  Google Scholar 

  28. Sur, S., L. S. Wild, B. K. Choudhury, N. Sur, R. Alam, and D. M. Klinman. 1999. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG Oligodeoxynucleotides. J. Immunol. 162:6284–6293.

    PubMed  CAS  Google Scholar 

  29. Serebrisky, D., A. A. Teper, C.-K. Huang, S.-Y. Lee, T. F. Zhang, B. H. Schofield, M. Kattan, H. A. Sampson, and X.-M. Li. 2000. CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B.7/B7.2 expression in a murine model of asthma. J. Immunol. 165:5906–5912.

    PubMed  CAS  Google Scholar 

  30. Shirota, H., K. Sano, T. Kikuchi, G. Tamura, and K. Shirota. 2000. Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligodeoxynucleotides as a novel antigen-specific immunomodulator. J. Immunol. 164:5575–5582.

    PubMed  CAS  Google Scholar 

  31. Kline, J. N., K. Kitagaki, T. R. Businga, and V. V. Jain. 2002. Treatment of established asthma in a murine model using CpG olygodeoxynucleotides. Am. J. Physiol. Lung Cell Mol. Physiol. 283:170–179.

    Google Scholar 

  32. Ikeda, R. K., J. Nayar, J. Y. Cho, M. Miller, M. Rodriguez, E. Raz, and D. H. Broide. 2003. Resolution of airway inflammation following ovalubumin inhaltation: Comparison of ISS DNA and corticosteroids. Am. J. Respir. Cell Mol. Biol. 28:655–663.

    Article  PubMed  CAS  Google Scholar 

  33. Hessel, E. M., M. Chu, J. O. Lizcano, B. Chang, N. Herman, S. A. Kell, M. Willskarp, and R. L. Coffman. 2005. Immunostimulatory oligonucleotides block allergic airway inflammation and IgE-mediated cytokine induction. J. Exp. Med. 202:1563–1573.

    Article  PubMed  CAS  Google Scholar 

  34. Hussain, I., V. Jain, K. Kitagaki, T. R. Businga, P. O’Shaughnessy, and J. N. Kline. 2002. Modulation of murine allergic rhinosinusitis by CpG oligodeoxynucleotides. Laryngoscope 112:1819–1826.

    Article  PubMed  CAS  Google Scholar 

  35. Rhee, C.-S., L. Libet, D. Chisholm, K. Takabayashi, S. Baird, T. D. Bigby, C. H. Lee, A. A. Horner, and E. Raz. 2004. Allergen-independent immunostimulatory sequence oligodeoxynucleotide therapy attenuates experimental allergic rhinitis. Immunology 113:106–113.

    Article  PubMed  CAS  Google Scholar 

  36. Hasegawa, K., and T. Hayashi. 2003. CpG oligodeoxynucleotides accelerate the development of lupus nephritis during preactive phase in NZB × NZWF1 mice. Lupus 12:1–8.

    Article  Google Scholar 

  37. Harris, N., R. Peach, J. Naemura, P. S. Linsley, L. G. Gros, and F. Ronchese. 1997. CD80 costimulation is essential for the induction of airway eosinophilia. J. Exp. Med. 185:177–182.

    Article  PubMed  CAS  Google Scholar 

  38. Hussain, I., D. Randolph, S. L. Brody, S.-K. Song, A. Hsu, A. M. Kahn, D. D. Chaplin, and D. L. Hamilos. 2001. Induction, distribution and modulation of upper airway allergic inflammation in mice. Clin. Exp. Allergy 31:1048–1059.

    Article  PubMed  CAS  Google Scholar 

  39. Farraj, A. K., J. R. Harkema, and N. E. Kaminski. 2004. Allergic rhinitis induced by intranasal sensitization and challenge with trimellitic anhydride but not with dinitrochorobenzen or oxazolone in A/J mice. Toxicol. Sci. 79:315–325.

    Article  PubMed  CAS  Google Scholar 

  40. Yamada, T., S. Kataoka, K. Ogasawara, R. Ishimitsu, K. Hashiguchi, T. Suzuki, and H. Kawauchi. 2005. Mucosal immunity of nasopharynx: An experimental study in TCR-transgenic (OVA23-3) mice. Rhinology 43:190–198.

    PubMed  Google Scholar 

  41. Hayashi, T., K. Hasegawa, Y. Sasaki, and T. Onodera. 2006. Elimination of CD4+ CD25+ T cell enhances Reo-2-triggered and CpG oligodeoxynucleotides-induced prolonged autoimmune insulitis in DBA/1 mice. Scand. J. Immunol. 163:116–124.

    Article  CAS  Google Scholar 

  42. Rutenfranz, I., and H. Kirchner. 1988. Pharmacokinetics of recombinant murine-γ interferon in mice. J. Interf. Res. 8:573–580.

    CAS  Google Scholar 

  43. Hart, T. K., R. M. Cook, P. Zia-Amirhosseni, E. Minthorn, T. S. Sellers, B. E. Maleeff, S. Eustis, L. M. Schwartz, P. Tsui, E. R. Appelbaum, E. C. Martiu, P. J. Bugelski, and D. J. Herzyk. 2001. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J. Allergy Clin. Immunol. 108:250–257.

    Article  PubMed  CAS  Google Scholar 

  44. Seminario, M.-C., and G. J. Gleich. 1994. The role of eosinophils in the pathogenesis of asthma. Curr. Opin. Immunol. 6:860–864.

    Article  PubMed  CAS  Google Scholar 

  45. Salib, R. J., A. Drake-Lee, and P. H. Howarth. 2003. Allergic rhinitis: past, present and the future. Clin. Otalaryngol. Allied Sci. 28:291–303.

    Article  CAS  Google Scholar 

  46. Takamura, H. 1994. Immunohistochemical study of inferior turbinate of nasal allergy with reference to eosinophil. J. Otolaryngol. Jpn. 97:61–66.

    CAS  Google Scholar 

  47. Wihl, J. A., and N. Mygind. 1997. Studies on the allergen-challenged human nasal mucosa. Acta Oto-laryngol. 84:281–286.

    Article  Google Scholar 

  48. Karlsson, G., and U. Pipkorn. 1989. Natural allergen exposure does not influence the density of goblet cells in the nasal mucosa of patients with seasonal allergic rhinitis. ORL J. Otorhinolaryngol. Relat. Spec. 51:171–174.

    PubMed  CAS  Google Scholar 

  49. Berger, G., A. Morz, Z. Marom, and D. Ophir. 1999. Inferior turbinate goblet cell secretion in patients with perennial allergic and nonallergic rhinitis. Am. J. Rhinol. 13:473–477.

    Article  PubMed  CAS  Google Scholar 

  50. Tyner, J. W., E. Y. Kim, K. Ide, M. R. Pelletier, W. T. Roswit, J. D. Morton, J. T. Battaile, A. C. Patel, G. A. Patterson, M. Castro, M. S. Spoor, Y. You, S. L. Brody, and M. J. Horzman. 2006. Blocking airway mucus metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J. Clin. Invest. 116:309–321.

    Article  PubMed  CAS  Google Scholar 

  51. Shimizu, T., H. Hirano, Y. Majima, and Y. Sakakura. 2000. A mechanism of antigen-induced mucus production in nasal epithelium of sensitized rats. A comparison with lipopolysaccharide induced mucus production. Am. J. Respir. Crit. Care Med. 161:1648–1654.

    PubMed  CAS  Google Scholar 

  52. Miyahara, S., N. Miyahara, S. Matsubara, K. Takeda, T. Koya, and E. W. Gelfand. 2006. IL-13 is essential to the late-phase response in allergic rhinitis. J. Allergy Clin. Immunol. 118:1110–1116.

    Article  PubMed  CAS  Google Scholar 

  53. Nelson, H. S. 2000. The use of standardized extracts in allergen immunotherapy. J. Allergy Clin. Immunol. 106:41–45.

    Article  PubMed  CAS  Google Scholar 

  54. Durham, S. R., S. M. Walker, E. M. Varga, M. R. Jacobson, F. O’Brien, W. Noble, S. J. Till, Q. A. Hamid, and K. T. Nouri-Aria. 1999. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 104:1258–1264.

    Google Scholar 

  55. Hayashi, T., K. Maeda, K. Hasegawa, S. Nakai, T. Hamachi, and H. Iwata. 2002. Systemic administration of interferon-γ-expressing plasmid reduces late allergic bronchitis in a mouse model of asthma. Int. J. Exp. Pathol. 83:81–86.

    Article  PubMed  CAS  Google Scholar 

  56. Jahn-Schmid, B., U. Wiedermann, B. Bohle, A. Rapa, D. Kraft, and C. Ebner. 1999. Oligodeoxynucleotides containing CpG motifs modulate the allergic TH2 response of BALB/c mice to Bet vl, the major birch pollene allergy. J. Allergy Clin. Immunol. 104:1015–1023.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grant-in-aid of the ministry of Education, Science, Sports and Culture of Japan (No.17658142). Thanks are due to Dr. KL Bui for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Hayashi.

Additional information

The authors wish it to be known, in their opinion, Toshiharu Hayashi and Keiko Hasegawa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, T., Hasegawa, K. & Sasaki, Y. Systemic Administration of Olygodeoxynucleotides with CpG Motifs at Priming Phase Reduces Local Th2 Response and Late Allergic Rhinitis in BALB/c Mice. Inflammation 31, 47–56 (2008). https://doi.org/10.1007/s10753-007-9048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-007-9048-9

Key words

Navigation