, Volume 30, Issue 3–4, pp 69–86 | Cite as

Ozone Therapy in Induced Endotoxemic Shock. II. The Effect of Ozone Therapy Upon Selected Histochemical Reactions in Organs of Rats in Endotoxemic Shock

  • Paweł Madej
  • Andrzej Plewka
  • Janusz A. Madej
  • Danuta Plewka
  • Wojciech Mroczka
  • Krzysztof Wilk
  • Zuzanna Dobrosz


Mitochondria and lysosomes were evaluated by assessment of changes in activity of selected enzymes: lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), adenosinetriphosphatase (ATPase), acid phosphatase (AcPase) and β-glucuronidase (BG) in rats under profound hypoxia induced by endotoxemic shock. The study was conducted on adult male Wistar rats. The animals formed the following four groups of 15 rats each: control animals (C);—rats receiving intraperitonally O2/O3 (CO), rats receiving of Escherichia coli toxin (LPS) (CL); rats receiving LPS plus oxygen–ozone mixture (OL). Histoenzymatic examinations of liver, kidney, lungs, and heart muscle were performed. Lipopolysaccharide suppressed activities of all the enzymes except for LDH, the activity of which as high as a fourfold increase. The results demonstrated potent, stabilizing and regenerative effects of ozone therapy on body enzymatic processes in course of induced endotoxemic shock in rats, which might prove to be of clinical significance.

Key words

endotoxemic shock ozone therapy oxidative stress respiratory enzymes rats 


  1. 1.
    Bone, R. C. 1994. Sepsis and its complications: the clinical problem. Crit. Care Med. 22:S8–S11.PubMedGoogle Scholar
  2. 2.
    Figureoa, J. A., D. Yee, and W. L. McGuire. 1993. Prognostic indicators in early breast cancer. Am. J. Med. Sci. 305:176–182.CrossRefGoogle Scholar
  3. 3.
    Thijs, L. G., J. P. de Boer, M. C. de Groot, and C. E. Hack. 1993. Coagulation disorders in septic shock. Intensive Care Med. 19:S8–S15.PubMedCrossRefGoogle Scholar
  4. 4.
    Thijs, L. G., A. B. Groeneveld, and C. E. Hack. 1996. Multiple organ failure in septic shock. Curr. Top Microbiol. Immunol. 216:209–237.PubMedGoogle Scholar
  5. 5.
    Barriere, S. L., and B. J. Guglielmo. 1992. Gram-negative sepsis, the sepsis syndrome, and the role of antiendotoxin monoclonal antibodies. Clin. Pharm. 11:223–235.PubMedGoogle Scholar
  6. 6.
    Heng, H., R. B. Rucker, J. Crotty, and M. A. Dubick. 1987. The effects of ozone on lung, heart, and liver superoxide dismutase and glutathione peroxidase activities in the protein-deficient rat. Toxicol. Lett. 38:225–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Bone, R. C. 1994. Gram-positive organisms and sepsis. Arch. Intern. Med. 154:26–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Angus D. C., W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29:1303–1310.PubMedCrossRefGoogle Scholar
  9. 9.
    Das, U. N. 2003. Current advances in sepsis and septic shock with particular emphasis on the role of insulin. Med. Sci. Monit. 9:RA181–192.PubMedGoogle Scholar
  10. 10.
    Das U. N. 2000. Critical advances in septicemia and septic shock. Crit. Care 4:290–296.PubMedCrossRefGoogle Scholar
  11. 11.
    Heidemann, S. M., L. Lomo, J. P. Ofenstein, and P. Samaik. 2000. The effect of heat on cytokine production in rat endotoxemia. Crit. Care Med. 28:1465–1468PubMedCrossRefGoogle Scholar
  12. 12.
    Vincent, J. L. 1997. New therapies in sepsis. Chest 112:330–338.Google Scholar
  13. 13.
    Michie, H. R. 1996. Metabolism of sepsis and multiple organ failure. World J. Surg. 20:460–464.PubMedCrossRefGoogle Scholar
  14. 14.
    Jakab, G. J., E. W. Spannhake, B. J. Canning, S. R. Kleeberger, and M. I. Gilmour. 1995. The effects of ozone on immune function. Environ. Health Perspect. 103(Suppl 2):77–89.PubMedCrossRefGoogle Scholar
  15. 15.
    Bocci, V. 1996. Does ozone therapy normalize the cellular redox balance? Med. Hyphotheses 46:150–154.CrossRefGoogle Scholar
  16. 16.
    Bocci, V. 1998. Is ozone therapy therapeutic? Perspect. Biol. Med. 42:131–143.PubMedGoogle Scholar
  17. 17.
    Bocci, V. 1999. Biological and clinical effects of ozone. Has ozone therapy a future in medicine? Br. J. Biomed. Sci. 56:270–279.PubMedGoogle Scholar
  18. 18.
    Canada, A. T., E. J. Calabrese, and D. Leonard. 1986. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats. J. Gerontol. 41:587–589.PubMedGoogle Scholar
  19. 19.
    Rilling, S., and R. Viebahn. 1990. Praxis der Ozone-Sauerstoff-Theorie. Ed. E. Fisher Verlag, Heidelberg.Google Scholar
  20. 20.
    Wielgus-Serafińska, E., A. Plewka, and M. Kamiński. 1993. Circadian variation of mitochondrial succinic dehydrogenase and microsomal cytochrome P-450 dependent monooxygenase activity in the liver of sexually immature and mature rats. J. Physiol. Pharmacol. 44:55–63.PubMedGoogle Scholar
  21. 21.
    Czekaj, P., A. Plewka, M. Kamiński, G. Nowaczyk, K. Pawlicki, and E. Wielgus-Serafińska. 1994. Daily and circadian rhythms in the activity of mixed function oxidases system in rats of different age. Biol. Rhythm. Res. 25:67–75.CrossRefGoogle Scholar
  22. 22.
    Wachstein, M., and E. Meisel. 1957. Histochemistry of hepatic phosphatases at physiologic pH with special reference to the demonstration of bile canaliculi. Ann. J. Clin. Path. 27:12–23, 1957.Google Scholar
  23. 23.
    Gomori, G. 1953. Microscopic Histochemistry. Principles and Practice. The University of Chicago Press, pp 137–224.Google Scholar
  24. 24.
    Vorbrodt, A. 1964. Histochemical methods of phosphatases identification. Ed. Krygier A. Vol. 6, Warszawa, pp 135–152.Google Scholar
  25. 25.
    Hayashi, M., Y. Nakajima, and W. H. Fishman. 1964. The cytologic demonstration of beta-glucoronidase emploiny naphtol AS-BI glucoronidase and hexasonium pararosanilin. J. Histochem. Cytochem. 12:293–297.PubMedGoogle Scholar
  26. 26.
    Madej, P., Z. Antoszewski, and J. A. Madej. 1995. Ozonotherapy. Mater Med. Pol. 27:53–56.PubMedGoogle Scholar
  27. 27.
    Bertoni-Freddari, C., P. Fattoretti, U. Caselli, R. Paoloni, and W. Meier-Ruge. 1996. Age-dependent decrease in the activity of succinic dehydrogenase in rat CA1 pyramidal cells: a quantitative cytochemical study. Mech. Ageing Develop. 90:53–62.CrossRefGoogle Scholar
  28. 28.
    Andres, D., N. Sanz, A. Zaragoza, A. M. Alvarez, and M. Cascales. 2000. Changes in antioxidant defence systems induced by cyclosporine A in cultures of hepatocytes from 2- and 12-month-old rats. Biochem. Pharmacol. 59:1091–1100.PubMedCrossRefGoogle Scholar
  29. 29.
    Malarkodi, K. P., A. V. Balachandar, and P. Varalakshmi. 2003. The influence of lipoic acid on adriamycin induced nephrotoxicity in rats. Mol. Cell. Biochem. 247:15–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Bartels, H., S. Freimann, and K. Jungermann. 1993. Predominant periportal expression of the phosphoenolpyruvate carboxykinase gene in liver of fed and fasted mice, hamster and rats studied by in situ hybridization. Histochemistry 99:303–309.PubMedCrossRefGoogle Scholar
  31. 31.
    Loffler, M., C. Becker, E. Wegerle, and G. Schuster. 1996. Catalytic enzyme histochemistry and biochemical analysis of dihydroorotata dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria. Histochem. Cell Biol. 105:119–128.PubMedCrossRefGoogle Scholar
  32. 32.
    Mansuy, D. 1998. The great diversity of reactions catalyzed by cytochromes P450. Comp. Biochem. Physiol. 121:5–14.Google Scholar
  33. 33.
    Plewka, A., M. Bienioszek, and D. Plewka. 1994. Changes in the male rat hepatic cytochrome P-450 level, heme oxygenase and δ-aminolevulinic acid synthase activities at various stages of life. Mech. Ageing. Develop. 74:79–88.CrossRefGoogle Scholar
  34. 34.
    Strumiło, S., and J. Czerniecki. 1996. Comparison of isoenzyme composition and kinetic properties of lactate dehydrogenase from rabbit and hare hearts. Biochem. Archiv. 12:85–88.Google Scholar
  35. 35.
    Lee, P. Ch., B. Jelinek., M. Struve, E. D. Bruder, and H. Raff. 2000. Effect of neonatal hypoxia on the development of hepatic lipase in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1341–1347.PubMedGoogle Scholar
  36. 36.
    Bagchi, D., M. Bagchi, E. A. Hassoun, and S. J. Stohs. 1995. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104:129–140.PubMedCrossRefGoogle Scholar
  37. 37.
    Plewka, A., M. Kamiński, and D. Plewka. 1998. Ontogenesis of hepatocyte respiration processes in relation to metabolism of xenobiotics. Mech. Ageing. Develop. 105:197–207.CrossRefGoogle Scholar
  38. 38.
    Mochitate, K., K. Ishida, T. Ohsumi, and T. Miura. 1992. Long-term effects of ozone and nitrogen dioxide on the metabolism and population of alveolar macrophages. J. Toxicol. Environ. Health 35:247–260.PubMedCrossRefGoogle Scholar
  39. 39.
    Mochitate, K., and T. Miura. 1989. Metabolic enhancement and increase of alveolar macrophages induced by ozone. Environ. Res. 49:79–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Muriel, P. 1995. Interferon-α preserves erythrocyte and hepatocyte ATPase activities from liver damage induced by prolongated bile duct ligation in the rat. J. Appl. Toxicol. 15:449–453.PubMedCrossRefGoogle Scholar
  41. 41.
    Tinton, S. A., V. H. Lefebvre, O. C. Cousin, and P. M. Buc-Calderon. 1993. Cytolytic effects and biochemical changes induced by extracellular ATP to isolated hepatocytes. Biochim. Biophys. Acta. 1176:1–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Arivazhagan, P., K. Ramanathan, C. Panneerselvam. 2001. Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem. Biol. Interact. 138:189–198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paweł Madej
    • 1
  • Andrzej Plewka
    • 2
  • Janusz A. Madej
    • 3
  • Danuta Plewka
    • 4
  • Wojciech Mroczka
    • 1
  • Krzysztof Wilk
    • 5
  • Zuzanna Dobrosz
    • 6
  1. 1.Department and Clinic of Gynaecological EndocrynologyMedical University of SilesiaKatowicePoland
  2. 2.Department of Protein Chemistry and EnzymologyMedical University of SilesiaSosnowiecPoland
  3. 3.Department of Pathological Anatomy and Forensic MedicineVeterinary AcademyWrocławPoland
  4. 4.Department of Histology and EmbryologyMedical University of SilesiaKatowicePoland
  5. 5.II Department and Clinic of Gynaecology and ObstetricsMedical University of SilesiaKatowicePoland
  6. 6.Department of PathomorphologyMedical University of SilesiaKatowicePoland

Personalised recommendations