, Volume 29, Issue 1, pp 23–32 | Cite as

Increased Oxidative Stress and Altered Levels of Antioxidants in Chronic Obstructive Pulmonary Disease

  • Ahmed Nadeem
  • Hanumanthrao Guru Raj
  • Sunil Kumar Chhabra
Original Articles


An imbalance between oxidative stress and antioxidative capacity has been proposed to play an important role in the development and progression of chronic obstructive pulmonary disease. We carried out a study to assess the systemic oxidant-antioxidant status in patients with chronic obstructive pulmonary disease (COPD) and relate it to the severity of disease. We measured a wide range of parameters of oxidant-antioxidant balance in leukocytes, plasma and red cells of 82 patients with COPD and 22 healthy non-smoking controls (HNC). Lung function was measured by spirometry. Staging of COPD was done as per the recommended guidelines. Red cell antioxidative enzyme activities were altered, with glutathione peroxidase (GSH-Px) having lower, superoxide dismutase (SOD) having greater and catalase having similar activity in patients as compared to HNC. In plasma, ferric reducing antioxidant power (FRAP) and total protein sulfhydryls were lower and GSH-Px, lipid peroxides measured as MDA-TBA products, and protein carbonyls were higher in the patients as compared to HNC. Plasma total nitrates and nitrites (NO x ) were similar in the two groups. Superoxide anion (O2•−) release from leukocytes upon stimulation with N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and total blood glutathione were also higher in patients as compared to HNC. Plasma FRAP had a positive whereas total blood glutathione had a significant negative correlation with the severity of airways obstruction (FEV1% predicted). Further, comparisons between clinical stages of severity of COPD revealed significant differences in plasma FRAP and total blood glutathione. Our observations suggest there is a systemic oxidant-antioxidant imbalance in the patients with COPD.

Key Words

COPD oxidative stress reactive oxygen species superoxide anion red cell antioxidants 



chronic obstructive pulmonary disease


healthy non-smoking controls


glutathione peroxidase


reactive oxygen species


superoxide dismutase


total nitrates and nitrites


alveolar macrophages


bronchoalveolar lavage


superoxide radical


nitric oxide


ferric reducing antioxidant power


krebs-ringer phosphate buffer with dextrose



MDA-TBA products

malondialdehyde-thiobarbituric acid products


nicotinamide adenine dinucleotide phosphate, reduced form


2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride


5,5′-dithiobis(2-nitrobenzoic acid)




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Thoracic Society. 1995. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. ATS Statement (supplement). Am. J. Respir. Crit. Care Med. 152:S77–S121.Google Scholar
  2. 2.
    Martin, T. R., G. Raghu, R. J. Maunder, and S. C. Springmeyer. 1985. The effects of chronic bronchitis and chronic airflow obstruction on lung populations recovered by bronchoalveolar lavage. Am. Rev. Respir. Dis. 132:254–260.PubMedGoogle Scholar
  3. 3.
    Hubbard, R. C., F. Ogushi, G. A. Fels, A. M. Cantin, M. Courtney, and R. G. Crystal. 1987. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inactivate the active site of alpha-1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J. Clin. Invest. 80:1289–1295.PubMedGoogle Scholar
  4. 4.
    Rahman, I., D. Morrison, K. Donaldson, and W. MacNee. 1996. Systemic oxidative stress in asthma, COPD and smokers. Am. J. Respir. Crit. Care. Med. 159:1055–1060.Google Scholar
  5. 5.
    Pryor, W. A., and K. Stone. 1993. Oxidants in cigarette smoke: Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N.Y.Acad. Sci. 686:12–28.PubMedGoogle Scholar
  6. 6.
    Eiserich, J. P., C. E. Cross, and A. vanderVliet. 1997. Nitrogen oxides are important contributors to cigarette smoke induced ascorbate oxidation. In: Vitamin C in health and disease, L. Packer and J. Fuchs, eds. Dekker, New York, pp. 399–412.Google Scholar
  7. 7.
    Schaberg, T., H. Haller, M. Rau, D. Kaiser, M. Fassebender, and H. Lode. 1992. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur. Resp. J. 5:387–393.Google Scholar
  8. 8.
    Morrison, D., I. Rahman, S. Lannan, and W. MacNee. 1999. Epithelial permeability, inflammation, and oxidant stress in the airspaces of smokers. Am. J. Respir. Crit. Care Med. 159:473–479.PubMedGoogle Scholar
  9. 9.
    Fishman, A. 1985. The pulmonary circulation. In: Handbook of Physiology, Section 3: The Respiratory System, A. Fishman, ed. American Physiological Society. Bathesda, MD, pp. 93–165.Google Scholar
  10. 10.
    MacNee, W., W. Wiggs, A. S. Belzberg, and J. C. Hogg. 1989. Regional pulmonary transit times in man. J. Appl. Physiol. 66:844–850.PubMedGoogle Scholar
  11. 11.
    Richards, G. A., A. J. Therson, A. Carel, V. D. Merwe, and R. Anderson. 1989. Spirometric abnormalities in young smokers correlate with increased chemiluminiscence responses of activated blood phagocytes. Am. Rev. Resp. Dis. 139:181–187.PubMedGoogle Scholar
  12. 12.
    Pinamonti, S., M. Muzzoli, M. C. Chicca, A. Papi, F. Ravenna, L. M. Fabbri, and A. Ciaccia. 1996. Xanthine oxidase activity in bronchoalveolar lavage fluid from patients with chronic obstructive pulmonary disease. Free. Rad. Biol. Med. 21:147–155.CrossRefPubMedGoogle Scholar
  13. 13.
    Postma, D. S., T. E. J. Renkema, J. A. Noordhock, H. Faber, H. J. Sluiter, and H. Kauffman. 1988. Association between nonspecific bronchial hyperreactivity and superoxide anion production by polymorphonuclear leukocytes in chronic airflow obstruction. Am. Rev. Resp. Dis. 137:57–61.PubMedGoogle Scholar
  14. 14.
    Ludwig, P. W., and J. R. Hoidal. 1982. Alterations in leukocyte oxidative metabolism in cigarette smokers. Am. Rev. Resp. Dis. 126:977–980.PubMedGoogle Scholar
  15. 15.
    Toth, K. M., D. P. Clifford, E. M. Berger, C. W. White, and J. E. Repine. 1984. Intact human erythrocyte prevents hydrogen peroxide mediated damage to isolated perfused rat lungs and cultured bovine pulmonary artery endothelial cells. J. Clin. Invest. 74:292–295.PubMedGoogle Scholar
  16. 16.
    Van Asbeck, B. S., J. Hoidal, G. M. Vercelloti, B. A. Schwartz, C. F. Moldow, and H. S. Jacob. 1985. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science 227:756–759.PubMedGoogle Scholar
  17. 17.
    Agar, N. S., S. N. H. Sadradeh, P. E. Hallaway, and J. W. Eaton. 1986. Erythrocyte catalase. A somatic oxidant defense. J. Clin. Invest. 77:319–321.PubMedGoogle Scholar
  18. 18.
    Heffner, J. E., and J. E. Repine. 1991. Antioxidants and the lung. In: The lung: Scientific foundations, R. G. Crystal and W. B. West, eds. Raven Press, New York, pp. 1811–1820.Google Scholar
  19. 19.
    McCusker, K., and J. Hoidal. 1990. Selective increase of antioxidant enzyme activity in the alveolar macrophages from cigarette smokers and smoke–exposed hamsters. Am. Rev. Resp. Dis. 141:678–682.PubMedGoogle Scholar
  20. 20.
    Kondo, T., S. Tagami, A. Yoshioka, M. Nishimura, and Y. Kawakami. 1994. Current smoking of elderly men reduces antioxidants in alveolar macrophages. Am. J. Respir. Crit. Care Med. 149:178–182.PubMedGoogle Scholar
  21. 21.
    Morrow, J. D., B. Frei, and A. W. Longwire. 1995. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. N. Engl. J. Med. 332:1198–1203.CrossRefPubMedGoogle Scholar
  22. 22.
    Pratico, D., S. Basili, M. Vieri, C. Cordova, F. Violi, and G. A. FitzGerald. 1998. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F-III, an index of oxidant stress. Am. J. Respir. Crit .Care Med. 158:1709–1714.PubMedGoogle Scholar
  23. 23.
    Pauwels, R. A., S. A. Buist, P. M. A. Calverley, C. R. Jenkins, and S. S. Hurd. 2001. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop Summary. Am. J. Respir. Crit. Care Med. 163:1256–1276.Google Scholar
  24. 24.
    Chhabra, S. K., S. Rajpal, and R. Gupta. 2001. Patterns of smoking in Delhi: Comparison of respiratory morbidity among Bidi and Cigarette smokers. Ind. J. Chest. Dis. Allied. Sci. 43:19–26.Google Scholar
  25. 25.
    Lehmeyer, J. E., R. Synderman, and R. B. Johnson. 1979. Stimulation of neutrophil oxidative metabolism by chemotactic peptides: Influence of calcium ion concentration and cytochalasin B and comparison with stimulation by phorbol myristate acetate. Blood 54:35–45.PubMedGoogle Scholar
  26. 26.
    Little, C., R. Olinescu, K. G. Reid, and P. J. O'Brien. 1970. Properties and regulation of glutathione peroxidase. J. Biol. Chem. 245:3632–3636.PubMedGoogle Scholar
  27. 27.
    Benzie, I. F. F., and J. J. Strain. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Chem. 239:70–76.Google Scholar
  28. 28.
    Tracey, W. R., J. Tse, and G. Carter. 1995. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J. Pharm. Exptl. Ther. 272:1011–1015.Google Scholar
  29. 29.
    Dousset, J., M. Trouilh, and M. Foglietti. 1983. Plasma malonaldehyde levels during myocardial infarction. Clin. Chim. Acta. 129:319–322.CrossRefPubMedGoogle Scholar
  30. 30.
    Hu, M.-L., C. J. Dillard, and A. Tappel. 1988. In vivo effects of aurothioglucose and sodium thioglucose on rat tissue sulfhydryls and plasma sulfhydryl reactivity. Agents. Actions 25:132–137.CrossRefPubMedGoogle Scholar
  31. 31.
    Levine, R. L., D. Garlard, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. Stadman. 1990. Determination of carbonyl content in oxidatively modified proteins. In: Methods in Enzymology. Vol. 186, N. Packer and A. N. Glazer, eds. Raven Press, New York, pp. 464–472.Google Scholar
  32. 32.
    Aebi, H. 1974. Catalase. In: Methods in Enzymatic Analysis Vol 2, H. U. Bergmeyer, ed. Academic Press, New York, pp. 673–678.Google Scholar
  33. 33.
    McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.PubMedGoogle Scholar
  34. 34.
    Griffith, O. W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207–212.CrossRefPubMedGoogle Scholar
  35. 35.
    Montuschi, P., S. A. Kharitonov, and P. J. Barnes. 2001. Exhaled carbon monoxide and nitric oxide in COPD. Chest 120:496–501.CrossRefPubMedGoogle Scholar
  36. 36.
    Dekhuijzen, P. N. R., K. K. H. Aben, I. Dekker, L. P. H. J. Aarts, P. L. M. L. Wielders, C. L. C. Van Herwaarden, and A. Bast. 1996. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 154:813–816.PubMedGoogle Scholar
  37. 37.
    Petrone, W. F., D. K. English, K. Wong, and J. M. McCord. 1980. Free radicals and inflammation: Superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. USA. 77:1159–1163.Google Scholar
  38. 38.
    Lehr, H.-A., E. Kress, M. D. Menger, H. P. Friedl, C. Hubner, K. E. Arfors, and K. Messmer. 1993. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters:Inhibition by CuZn-SOD. Free. Rad. Biol.Med. 14:573–581.CrossRefPubMedGoogle Scholar
  39. 39.
    Balint, B., L. E. Donnelly, T. Hanazawa, S. A. Kharitonov, and P. J. Barnes. 2001. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 56:456–461.CrossRefPubMedGoogle Scholar
  40. 40.
    Rutgers, S. R, T. W. V. Mark, W. Coers, H. Moshage, W. Timens, H. F. Kauffman, G. H. Koeter, and D. S. Postma. 1999. Markers of nitric oxide metabolism in sputum and exhaled air are not increased in chronic obstructive pulmonary disease. Thorax. 54:576–580.PubMedGoogle Scholar
  41. 41.
    Blum, J., and I. Fridovich. 1985. Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 249:500–508.Google Scholar
  42. 42.
    Comhair, S. A. A., M. J. Thomassen, and S. C. Erzurum. 2000. Differential induction of extracellular glutathione peroxidase and nitric oxide synthase 2 in the airways of healthy individuals exposed to 100% O2 or cigarette smoke. Am. J. Respir. Cell. Mol. Biol. 23:350–354.PubMedGoogle Scholar
  43. 43.
    Rahman, I., C. A. D. Smith, M. F. Lawson, D. J. Harrison, and W. MacNee. 1996. Induction of gamma-glutamylcysteine synthetase by cigarette smoke is associated with AP-1 in human alveolar epithelial cells. FEBS. Lett. 396:21–25.CrossRefPubMedGoogle Scholar
  44. 44.
    Lynch, R. E. and I. Fridovich. 1978. Permeation of the erythrocyte stroma by superoxide radical. J. Biol .Chem. 253: 4697–4699.PubMedGoogle Scholar
  45. 45.
    Cross, C. E., C. A. O'Neill, A. Z. Reznick, M. L. Hu, L. Marcocci, L. Packer, and B. Frei. 1993. Cigarette smoke oxidation of human plasma constituents. Ann. N.Y. Acad. Sci. USA 686:72–90.Google Scholar
  46. 46.
    Reznick, A. Z., C. E. Cross, M. L. Hu, Y. J. Suzuki, S. Khwaja, A. Safadi, P. A. Motchnik, L. Packer, and B. Halliwell. 1982. Modification of plasma proteins by cigarette smoke as measured by protein carbonyls formation. Biochem. J. 286:607–611.Google Scholar
  47. 47.
    Frei, B., T. M. Forte, B. N. Ames, and C. E. Cross. 1991. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Biochem. J. 277:133–138.PubMedGoogle Scholar
  48. 48.
    Linden, M., J. B. Rasmussen, L. Pitulainen, A. Tunek, M. Larson, H. Tegner, P. Venge, L. A. Laitinen, and R. Brattsand. 1993. Airway inflammation in smokers and non–obstructive and obstructive chronic bronchitis. Am Rev Respir Dis. 48:1226–1232.Google Scholar
  49. 49.
    Rahman, I., E. Swarska, M. Henry, J. Stolk, and W. MacNee. 2000. Is there any relationship between plasma antioxidant capacity and lung function in smokers and patients with chronic obstructive pulmonary disease? Thorax. 55:189–193.CrossRefPubMedGoogle Scholar
  50. 50.
    Ghiselli, A., M. Serafini, F. Natella, and C.Scaccini. 2000. Total antioxidant capacity to assess redox status: Critical view and experimental data. Free Radio Biol. Med. 29:1106–1114.Google Scholar
  51. 51.
    Schafer, F. Q. and G. R. Buettner. 2001. Redox environment of the cells as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radio Biol Med. 30:1191–1212.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ahmed Nadeem
    • 1
    • 2
  • Hanumanthrao Guru Raj
    • 1
    • 2
  • Sunil Kumar Chhabra
    • 1
    • 2
    • 3
  1. 1.Department of Cardiorespiratory Physiology, Vallabhbhai Patel Chest InstituteUniversity of DelhiDelhi
  2. 2.Department of Biochemistry, Vallabhbhai Patel Chest InstituteUniversity of DelhiDelhi
  3. 3.Department of Cardiorespiratory Physiology, Vallabhbhai Patel Chest InstituteUniversity of DelhiDelhiIndia

Personalised recommendations