Skip to main content
Log in

Mossbauer and Raman spectroscopy study of Y-garnet particles’ magnetic properties tune-up through mechanochemically synthesized precursors

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We apply high energy mechanosynthesis in mixtures of Y2O3 and Fe2O3 to form activated nanostructured oxide composites for subsequent temperature treatment with the aim to synthesize single phase functional Y3Fe5O12 garnet particles. Obtained at the same temperature regime but starting from structurally different precursors, garnet particles demonstrate different magnetic behavior. Mossbauer and Raman spectroscopy were applied for a comprehensive characterization on the local atomic scale the influence of the mechanochemically produced precursor’s fine structure formed at different activation duration on the structural and magnetic state of the garnet particles. X-ray diffraction and visualization of fine particles structure by SEM microscopy were supplemented. An intermediate disordered iron oxide phases and orthoferrite YFeO3 rather garnet structure formation at prolonged duration of intense mechanical activation was determined. Magnetic structure of Y3Fe5O12 formed after annealing was dependent on the degree of the oxides interaction in precursors and defects concentrated at the grain boundaries and interfaces. Both applied spectroscopies showed complementary insight into the nature of the local structural disorder at the steps of mechanosynthesis to the mechanism of fine garnet structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz I.F, Freire С., Araujo J., Pereira C., Pereira A.M. Multifunctional ferrite nanoparticles: from current trends toward the future. In Magnetic nanostructured materials (Elsevier) Chapter 3, 59–115 (2018)

  2. Bao, J., Wen, T., Samia, A.C., Khandahar, A., Krishnan, K.M.: Magnetic nanoparticles material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci. 51, 513–553 (2016). https://doi.org/10.1007/s10853-015-9324-2

    Article  ADS  Google Scholar 

  3. Mallmann, E.J.J., Sombra, A.S.B., Goes, J.C., Fechine, P.B.A.: Yttrium Iron garnet: properties and applications. Review. Solid State Phen. 202, 65–96 (2013). https://doi.org/10.4028/www.scientific.net/SSP.202.65

    Article  Google Scholar 

  4. Geller, S., Gilleo, M.A.: The crystal structure and ferrimagnetism of yttrium-iron garnet, Y3Fe2(FeO4)3. J. Phys. Chem. Solids. 3, 30–36 (1957). https://doi.org/10.1016/0022-3697(57)90044-6

    Article  ADS  Google Scholar 

  5. Dodokin A.P., Lyubutin I. S., Belyaev L. M., Peshkov V. P., Zh. Éksp. Teor. Fiz. 63, 1393 (1972) [Sov. Phys. JETP 36, 738 (1973)]

  6. Bashkirov, S.S., Liberman, A.V., Sinyavskiy, V.I.: Magnetic Structure of Ferrites, Kazan (1978)

  7. Akhtar, M.N., Khan, M.A., Ahmad, M., et al.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. of Magn. Magn. Mater. 368, 393–400 (2014)

    Article  ADS  Google Scholar 

  8. Ali, W.F.F.W.: Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method. J. Eur. Ceram. Soc. 33(7), 1317–1324 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.12.016

    Article  Google Scholar 

  9. Tan, S., Zhang, W., Yang, L., Chen, J., Wang, Z.: Intrinsic defects in yttrium iron garnet: A first-principles study. J. Appl. Phys. 128, 183904 (2020). https://doi.org/10.1063/5.0021862

    Article  ADS  Google Scholar 

  10. Sanches, R.D., Rivas, J., et al.: Particle size effects on magnetic properties of yttium iron garnets prepared by sol-gel method. J. Magn. Magn. Mater. 247, 92–98 (2002)

    Article  ADS  Google Scholar 

  11. Tretyakov Yu.D., Oleinikov N.N., Granik V.A.Physical and Chemical Base of Ferrite Thermal Treatment. Moscow. Moscow University press. (1973)

  12. Belov K.P, Tretyakov Yu.D. Physics and chemistry of ferrites. - Moscow. MSU press-(1973)

  13. Ristic M. Nowik I, Popovic S, Felner I, Music S. Influence of synthesis procedure on the YIG formation. Mater. Lett. 57\16–17, 2584–2590 (2003)

  14. Widatallah, Н.М., Johnson, С., Al-Harthi, S.H., et al.: A structural and Mossbauer study of Y3Fe5O12 nanoparticles prepared with high energy ball milling and subsequent sintering. Hyperfine Interact. 183(1–3), 259–264 (2008). https://doi.org/10.1007/s10751-008-9734-5

    Article  Google Scholar 

  15. Sanchez-De Jesu’s F., Corte’s C.A., Valenzuela R., Ammar S., Boları’n-Miro A.M.: Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball milling. Ceram. Int. 38(5257–5263), (2012). https://doi.org/10.1016/j.ceramint.2012.03.036

  16. Cortes-Escobedo, C., Bolarin-Miro, A.M., Jesus, F.S.-D., Valenzuela, R., Juarez-Camacho, E.P., Samperio-Gomez, I.L., Ammar, S.: Y3Fe5O12 prepared by Mechanosynthesis from different Iron sources. Adv. Mater. Phys. Chem. 3(1), 41–46 (2013)

    Article  Google Scholar 

  17. P. Perrot Iron-Oxygen-Yttrium in: Ternary Alloy Syst. / ed. G. Effenberg,. S. Ilyenko. Berlin, Heidelberg: Springer Berlin Heidelberg, (2009)

  18. Mechanocomposites Precursors for Creating Materials with New Properties, Ed. by O. I. Lomovskii (Siberian Branch RAS, Novosibirsk, (2010) [in Russian]

  19. Kiseleva, T.Y., Novakova, A.A., Grigor’eva, T.F., Barinova, A.P., Vorsina, I.A.: Mechanical synthesis for corundum ceramics/intermetallide nanocomposites. Advanced. Mater. (Rus). 6, 11–20 (2008)

    Google Scholar 

  20. Kiseleva, T., Letsko, A., Talako, T., Kovaleva, S., Grigoreva, T., Novakova, A., Lyakhov, N.: Mossbauer spectroscopy study of Fe@ZrO2 nanocomposites formation by MA SHS technology. Hyperfine interactions. (2015). https://doi.org/10.1007/s10751-018-1490-6

  21. Abrashev, M.V., Todorov, N.D., Geshev, J.: Raman spectra of R2O3 (R-rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study. J. Appl. Phys. 116, 103508 (2014). https://doi.org/10.1063/1.4894775

    Article  ADS  Google Scholar 

  22. Cornell, R.M. Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses /R.M.Cornell, U.Schwertmann. - John Wiley & Sons, (2006)

  23. Barton-Lopez J.F. Vibrational and magnetic properties of YIG ferrite powders obtained by the Pechini method. J. of Phys.: Conf.Ser.1221, 0123017

  24. Nagrare, B.S., Kekade, S.S., Thombare, B., Reddy, R.V.: Hyperfine interaction, Raman and magnetic study of YFeO3 nanocrystals. Solid State Comm. 280, 32–38 (2018). https://doi.org/10.1016/j.ssc.2018.06.004

    Article  ADS  Google Scholar 

  25. Kodama, R.H., Beerkowitz, A.E.: Atomic-scale magnetic modelling of oxide nanoparticles. Phys.revew. B. 9, 590, 6321 (1999). https://doi.org/10.1103/PhysRevB.59.6321

    Article  Google Scholar 

  26. Downie, L.J., Goff, R.J., Kockelmann, W., Forder, S.D., Parker, J.E., Morrison, F.D., Lightfoot, P.: Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, in). J. Solid State Chem. 190, 52–60 (2012)

    Article  ADS  Google Scholar 

  27. Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Filho, W.L.M., Berquo, T.S.: Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior. Chem. Mater. 16(10), 1906–1913 (2004). https://doi.org/10.1021/cm0311729

    Article  Google Scholar 

  28. Zyryanov V.V. Achievements in Chemistry (in Russian). 77, (2), 107–136 (2008)

Download references

Acknowledgements

Authors thank Moscow University Program of Development, Siberian Branch of Russian Academy of Science, RFBR 19-52-44003 Russian-Mongolian Joint project for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiseleva Tatiana.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatiana, K., Tatiana, G., Pavel, T. et al. Mossbauer and Raman spectroscopy study of Y-garnet particles’ magnetic properties tune-up through mechanochemically synthesized precursors. Hyperfine Interact 242, 57 (2021). https://doi.org/10.1007/s10751-021-01770-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01770-2

Keywords

Navigation