Open source multichannel analyzer and remote monitor for Mössbauer spectroscopy


We describe the design and evaluation of an open source multi-channel analyzer for Mössbauer spectroscopy with a performance comparable with a commercial device. The proposed instrument also features a web application for the remote monitoring of the acquired spectra. The results show that the spectra of selected samples obtained with the commercial and with the proposed device, exhibit the same hyperfine parameters, giving in this way a validation of the instrument. The remote monitoring capability of the system, reduces the exposure time to radiation and facilitates the real time check of the spectrum.

This is a preview of subscription content, access via your institution.


  1. 1.

    Long, G.J.: Mössbauer Spectroscopy Applied to Inorganic Chemistry, p 27. Springer US, New York (2013)

    Google Scholar 

  2. 2.

    Fisher, D.K., Gould, P.J.: Open-Source Hardware is a Low-Cost alternative for scientific instrumentation and research. Modern Instrum. 1, 8–20 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    Novak, P., Prochazka, V., Stejskal, A., Kopp, J., Pechousek, J.: Pulse length amplitude filtration of gamma radiation detection, utilization in the 57Fe mössbauer spectroscopy. Nucl. Instrum. Meth. A 940, 152–155 (2019)

    ADS  Article  Google Scholar 

  4. 4.

    Morales, A.L., Zuluaga, J., Cely, A., Tobón, J.: Autonomous System Design for mössbauer Spectra Acquisition. Hyperfine Interactions 134, 167–170 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    López, J.H., Restrepo, J., Barrero, C.A., Tobón, J.E., Ramírez, L.F., Jaramillo, J.: Autonomous sample switcher for mössbauer spectroscopy. Hyperfine Interact. 238, 10 (2017)

    Article  Google Scholar 

  6. 6.

    Sneve, M.K., Kiselev, M.F.: Challenges in Radiation Protection and Nuclear Safety Regulation of the Nuclear Legacy. NATO Science for Peace and Security Series C: Environmental Security. Springer US, pp. 5-6, pp. 19-25, pp. 79-109 (2008)

  7. 7.

    Cooper, J.R.: Radiation protection principles. J. Radiol. Prot. 32, 81–87 (2012)

    Article  Google Scholar 

  8. 8.

    Velásquez, A.A., Trujillo, J.M., Morales, A.L., Tobón, J.E., Reyes, L., Gancedo, J.R.: Design and Construction of an Autonomous Control System for mössbauer Spectrometry. Hyperfine Interact. 161, 139–145 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    Authors Git-Hub: <>, accesed September 2019

  10. 10.

    Digilent [online]. uC32 board reference: <>, accesed September 2019

  11. 11.

    Ortec [online]. Modular Pulse-Processing Electronics Catalog: <>, accesed September 2019.

  12. 12.

    Recoil: Mössbauer spectral analysis software [online]. <>, accesed September 2019

  13. 13.

    Long, G.J.: The Ideal mössbauer Effect Absorber Thickness. Mössbauer Effect Reference and Data Journal. 6, 42–49 (1983)

    Google Scholar 

Download references


Financial support by CODI-UdeA (Project Entitled: ”Estrategia de sostenibilidad Grupo de Estado Sólido 2018-2019”) is greatly acknowledged.

Author information



Corresponding author

Correspondence to E. Giraldo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the IV Escuela Colombiana de Espectroscopía Mössbauer, Ibagué, Colombia, 10-12 July 2019

Edited by Jean-Marc Grenèche, Humberto Bustos Rodriguez and Juan Sebastian Trujillo Hernandez

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giraldo, E., Ruales, A.A., Ramírez, L.F. et al. Open source multichannel analyzer and remote monitor for Mössbauer spectroscopy. Hyperfine Interact 241, 47 (2020).

Download citation


  • Open source
  • Multichannel analyzer
  • Remote monitoring
  • Mössbauer spectroscopy

Mathematics Subject Classification (2010)

  • 97R60
  • 93C83