Abstract
The JYFLTRAP double Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility offers excellent possibilities for high-precision mass measurements of radioactive ions. Around 400 atomic masses, including around 50 isomeric states, have been measured since JYFLTRAP became operational. JYFLTRAP has also been used as a high-resolution mass separator for decay spectroscopy experiments as well as an ion counter for fission yield studies. In this contribution, an overview of recent activities at the JYFLTRAP Penning trap is given, with a focus on nuclei discussed in the PLATAN2019 meeting.
References
- 1.
Blaum, K., Dilling, J., Nörtershäuser, W.: Precision atomic physics techniques for nuclear physics with radioactive beams. Phys. Scr. T152, 014017 (2013). https://doi.org/10.1088/0031-8949/2013/t152/014017
- 2.
Dilling, J., Blaum, K., Brodeur, M., Eliseev, S.: Penning-Trap Mass Measurements in Atomic and Nuclear Physics. Annu. Rev. Nucl. Part. Sci. 68(1), 45 (2018). https://doi.org/10.1146/annurev-nucl-102711-094939
- 3.
Eronen, T., Kankainen, A., Äystö, J.: Ion traps in nuclear physics-Recent results and achievements. Progr. Part. Nucl. Phys. 91, 259 (2016). https://doi.org/10.1016/j.ppnp.2016.08.001. http://www.sciencedirect.com/science/article/pii/S0146641016300436
- 4.
Schatz, H.: Nuclear masses in astrophysics. Int. J. Mass Spectrom. 349-350, 181 (2013). https://doi.org/10.1016/j.ijms.2013.03.016. http://www.sciencedirect.com/science/article/pii/S1387380613001073. 100 years of Mass Spectrometry
- 5.
Kolhinen, V., Kopecky, S., Eronen, T., Hager, U., Hakala, J., Huikari, J., Jokinen, A., Nieminen, A., Rinta-Antila, S., Szerypo, J., Äystö, J.: JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL. Nucl. Instrum. Meth. Phys. Res. Sect. A 528(3), 776 (2004). https://doi.org/10.1016/j.nima.2004.05.029. http://www.sciencedirect.com/science/article/pii/S0168900204009854
- 6.
Eronen, T., Kolhinen, V.S., Elomaa, V.V., Gorelov, D., Hager, U., Hakala, J., Jokinen, A., Kankainen, A., Karvonen, P., Kopecky, S., Moore, I.D., Penttilä, H., Rahaman, S., Rinta-Antila, S., Rissanen, J., Saastamoinen, A., Szerypo, J., Weber, C., Äystö, J.: JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification. Eur. Phys. J. A 48(4), 46 (2012). https://doi.org/10.1140/epja/i2012-12046-1
- 7.
Nesterenko, D.A., Eronen, T., Kankainen, A., Canete, L., Jokinen, A., Moore, I. D., Penttilä, H., Rinta-Antila, S., de Roubin, A., Vilen, M.: Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer. Eur. Phys. J. A 54 (9), 154 (2018). https://doi.org/10.1140/epja/i2018-12589-y
- 8.
Äystö, J.: Development and applications of the IGISOL technique. Phys, Nucl. A 693(1-2), 477 (2001). https://doi.org/10.1016/s0375-9474(01)00923-x
- 9.
Moore, I., Eronen, T., Gorelov, D., Hakala, J., Jokinen, A., Kankainen, A., Kolhinen, V., Koponen, J., Penttilä, H., Pohjalainen, I., Reponen, M., Rissanen, J., Saastamoinen, A., Rinta-Antila, S., Sonnenschein, V., Äystö, J.: Towards commissioning the new IGISOL-4 facility. Nucl. Instrum. Meth. Phys. Res. B 317, 208 (2013). https://doi.org/10.1016/j.nimb.2013.06.036
- 10.
Vilén, M., Canete, L., Cheal, B., Giatzoglou, A., de Groote, R., de Roubin, A., Eronen, T., Geldhof, S., Jokinen, A., Kankainen, A., Moore, I., Nesterenko, D., Penttilä, H., Pohjalainen, I., Reponen, M., Rinta-Antila, S.: Mass measurements and production of ions at IGISOL for the astrophysical r- and rp-processes. Nucl. Instrum. Meth. Phys. Res. Sect. B https://doi.org/10.1016/j.nimb.2019.04.051http://www.sciencedirect.com/science/article/pii/S0168583X19302344 (2019)
- 11.
Nieminen, A., Huikari, J., Jokinen, A., Äystö, J., Campbell, P., Cochrane, E.: Beam cooler for low-energy radioactive ions. Nucl. Instrum. Meth. Phys. Res. Sect. A 469(2), 244 (2001). https://doi.org/10.1016/s0168-9002(00)00750-6
- 12.
Savard, G., Becker, S., Bollen, G., Kluge, H.J., Moore, R., Otto, T., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158(5), 247 (1991). http://www.sciencedirect.com/science/article/pii/0375960191910082
- 13.
Gräff, G., Kalinowsky, H., Traut, J.: A direct determination of the proton electron mass ratio. Z. Phys. A 297(1), 35 (1980). https://doi.org/10.1007/bf01414243
- 14.
König, M., Bollen, G., Kluge, H.J., Otto, T., Szerypo, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Proc. 142(1-2), 95 (1995). https://doi.org/10.1016/0168-1176(95)04146-c
- 15.
Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Ramirez, E.M., Nesterenko, D.A., Novikov, Y. N., Schweikhard, L.: A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114(1), 107 (2014). https://doi.org/10.1007/s00340-013-5621-0
- 16.
http://www.roentdek.de. MCP delay line detector, RoentDek Handels GmbH
- 17.
Nesterenko, D., Canete, L., Eronen, T., Jokinen, A., Kankainen, A., Novikov, Y., Rinta-Antila, S., de Roubin, A., Vilen, M.: High-precision measurement of the mass difference between 102Pd and 102Ru. Int. J. Mass Spectrom. 435, 204 (2019). https://doi.org/10.1016/j.ijms.2018.10.038. http://www.sciencedirect.com/science/article/pii/S1387380618303257
- 18.
Eronen, T., Hardy, J.C., Canete, L., Jokinen, A., Hakala, J., Kankainen, A., Kolhinen, V.S., Koponen, J., Moore, I.D., Murray, I.M., Penttilä, H., Pohjalainen, I., Poleshchuk, O., Reinikainen, J., Rinta-Antila, S., Soukouti, N., Voss, A., Äystö, J.: QEC value of the superallowed β emitter 42Sc. Phys. Rev. C 95, 025501 (2017). https://doi.org/10.1103/PhysRevC.95.025501
- 19.
Nesterenko, D.A., Kankainen, A., et al.: High-precision mass measurements for the isobaric multiplet mass equation at A = 52. J. Phys. G: Nucl.Part. Phys. 44(6), 065103 (2017). https://doi.org/10.1088/1361-6471/aa67ae
- 20.
Raduta, A.R., Gulminelli, F., Oertel, M.: Modification of magicity toward the dripline and its impact on electron-capture rates for stellar core collapse. Phys. Rev. C 93, 025803 (2016). https://doi.org/10.1103/PhysRevC.93.025803
- 21.
Sullivan, C., O’Connor, E., Zegers, R.G.T., Grubb, T., Austin, S.M.: The sensitivity of core-collapse supernovae to nuclear electron capture. Astrophys. J. 816(1), 44 (2015). https://doi.org/10.3847/0004-637x/816/1/44
- 22.
Giraud, S.: Mesures de masse autour du 78Ni et nouveau traitement de l’équilibre statistique nucléaire pour l’étude des supernovae á effondrement de coeur. Ph.D. thesis Caen (2019)
- 23.
Broda, R., et al.: N = 40 Neutron Subshell Closure in the 68Ni Nucleus. Phys. Rev. Lett. 74, 868 (1995). https://doi.org/10.1103/PhysRevLett.74.868
- 24.
Sorlin, O., Leenhardt, S., Donzaud, C., Duprat, J., Azaiez, F., Nowacki, F., Grawe, H., Dombrádi, Z., et al.: \(_{28}^{68}\)Ni40: Magicity versus Superfluidity. Phys. Rev. Lett. 88, 092501 (2002). https://doi.org/10.1103/PhysRevLett.88.092501
- 25.
Rahaman, S., Hakala, J., Elomaa, V.V., Eronen, T., Hager, U., Jokinen, A., Kankainen, A., Moore, I.D., Penttilä, H., Rinta-Antila, S., Rissanen, J., Saastamoinen, A., Weber, C., Äystö, J.: Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28, N = 40. Eur. Phys. J. A 34(1), 5 (2007). https://doi.org/10.1140/epja/i2007-10489-y
- 26.
Guénaut, C., et al.: High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N = 40. Phys. Rev. C 75, 044303 (2007). https://doi.org/10.1103/PhysRevC.75.044303
- 27.
Block, M., et al.: Discovery of a Nuclear Isomer in 65Fe with PenningTrap Mass Spectrometry. Phys. Rev. Lett. 100, 132501 (2008). https://doi.org/10.1103/PhysRevLett.100.132501
- 28.
Ferrer, R., Block, M., et al.: Penning trap mass spectrometry of neutron-rich Fe and Co isotopes around N = 40 with the LEBIT mass spectrometer. Phys. Rev. C 81, 044318 (2010). https://doi.org/10.1103/PhysRevC.81.044318
- 29.
Izzo, C., et al.: Precision mass measurements of neutron-rich Co isotopes beyond N = 40. Phys. Rev. C 97, 014309 (2018). https://doi.org/10.1103/PhysRevC.97.014309
- 30.
Canete, L., Giraud, S., Kankainen, A., Bastin, B., Nowacki, F., Poves, A., et al.: Precision mass measurements of 67Fe and 69,70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates. Phys. Rev. C Rapid Comm. (2020 )
- 31.
Canete, L.: High precision mass measurements for nuclear astrophysics. Ph.D. thesis, Jyväskylä. http://urn.fi/URN:ISBN:978-951-39-7693-4 (2019)
- 32.
Nowacki, F., Poves, A., Caurier, E., Bounthong, B.: Shape Coexistence in 78Ni as the Portal to the Fifth Island of Inversion. Phys. Rev. Lett. 117, 272501 (2016). https://doi.org/10.1103/PhysRevLett.117.272501
- 33.
Pauwels, D., Ivanov, O., Bree, N., Büscher, J., Cocolios, T.E., Gentens, J., Huyse, M., Korgul, A., Kudryavtsev, Y., Raabe, R., Sawicka, M., Stefanescu, I., Van de Walle, J., Van den Bergh, P., Van Duppen, P., Walters, W.B.: Shape isomerism at N = 40: Discovery of a proton intruder state in 67Co. Phys. Rev. C 78, 041307 (2008). https://doi.org/10.1103/PhysRevC.78.041307
- 34.
Arnould, M., Goriely, S., Takahashi, K.: The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450(4–6), 97 (2007). https://doi.org/10.1016/j.physrep.2007.06.002
- 35.
Horowitz, C.J., et al.: r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G: Nucl. Part. Phys. 46(8), 083001 (2019). https://doi.org/10.1088/1361-6471/ab0849
- 36.
Surman, R., Mumpower, M., Sinclair, R., Jones, K.L., Hix, W.R., McLaughlin, G.C.: Sensitivity studies for the weak r process: neutron capture rates. AIP Advances 4(4), 041008 (2014). https://doi.org/10.1063/1.4867191
- 37.
Mumpower, M.R., Surman, R., Fang, D.L., Beard, M., Möller, P., Kawano, T., Aprahamian, A.: Impact of individual nuclear masses on r-process abundances. Phys. Rev. C 92, 035807 (2015). https://doi.org/10.1103/PhysRevC.92.035807
- 38.
Breitenfeldt, M., Borgmann, C., et al.: Approaching the N = 82 shell closure with mass measurements of Ag and Cd isotopes. Phys. Rev. C 81, 034313 (2010). https://doi.org/10.1103/PhysRevC.81.034313
- 39.
Knöbel, R., Diwisch, M., Geissel, H., Litvinov, Y.A., Patyk, Z., Plaß, W.R., Scheidenberger, C., Sun, B., Weick, H., et al.: New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI. Eur. Phys. J. A 52(5), 138 (2016). https://doi.org/10.1140/epja/i2016-16138-6
- 40.
Wang, M., Audi, G., Kondev, F., Huang, W., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41(3), 030003 (2017). http://stacks.iop.org/1674-1137/41/i=3/a=030003
- 41.
Batchelder, J.C., Brewer, N.T., Goans, R.E., Grzywacz, R., Griffith, B.O., Jost, C., Korgul, A., Liu, S.H., Paulauskas, S.V., Spejewski, E.H., Stracener, D.W.: Low-lying collective states in 120Cd populated by β decay of 120Ag: Breakdown of the anharmonic vibrator model at the three-phonon level. Phys. Rev. C 86, 064311 (2012). https://doi.org/10.1103/PhysRevC.86.064311
- 42.
Audi, G., Kondev, F.G., Wang, M., Huang, W., Naimi, S.: The NUBASE 2016 evaluation of nuclear properties. Chin. Phys. C 41(3), 030001 (2017). https://doi.org/10.1088/1674-1137/41/3/030001
- 43.
Vilen, M., Kelly, J.M., Kankainen, A., Brodeur, M., et al.: Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations. Phys. Rev. Lett. 120, 262701 (2018). https://doi.org/10.1103/PhysRevLett.120.262701
- 44.
Vilén, M., Kelly, J.M., Kankainen, A., Brodeur, M., et al.: Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP. Phys. Rev. C (2020)
- 45.
Greenwood, R., Putnam, M.: Measurement of β− end-point energies using a Ge detector with Monte Carlo generated response functions. Nucl. Instrum. Meth. Phys. Res. Sect. A 337 (1), 106 (1993). https://doi.org/10.1016/0168-9002(93)91142-A. http://www.sciencedirect.com/science/article/pii/016890029391142A
- 46.
Shibata, M., Shindou, T., Kawade, K., Kojima, V., Taniguchi, A., Kawase, Y., Ichikawa, S. In: J. Äystö, Dendooven, P., Jokinen, A., Leino, M. (eds.) : in Exotic Nuclei and Atomic Masses. Proceedings of the Third International Conference on Exotic Nuclei and Atomic Masses ENAM 2001 Hämeenlinna, Finland, 2–7 July 2001, p 479. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-55560-2 ISBN: 978-3-540-00101-0
- 47.
Orford, R., et al.: Precision mass measurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018). https://doi.org/10.1103/PhysRevLett.120.262702
- 48.
Goriely, S., Sida, J.L., Lemaître, J.F., Panebianco, S., Dubray, N., Hilaire, S., Bauswein, A., Janka, H.T.: New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements. Phys. Rev. Lett. 111, 242502 (2013). https://doi.org/10.1103/PhysRevLett.111.242502
- 49.
Surman, R., Engel, J., Bennett, J.R., Meyer, B.S.: Source of the Rare-Earth Element Peak in r-Process Nucleosynthesis. Phys. Rev. Lett. 79, 1809 (1997). https://doi.org/10.1103/PhysRevLett.79.1809
- 50.
Mumpower, M.R., McLaughlin, G.C., Surman, R.: Formation of the rare-earth peak: Gaining insight into late-time r-process dynamics. Phys. Rev. C 85, 045801 (2012). https://doi.org/10.1103/PhysRevC.85.045801
- 51.
Mendoza-Temis, J.D.J., Wu, M.R., Langanke, K., Martínez-Pinedo, G., Bauswein, A., Janka, H.T.: Nuclear robustness of the r process in neutron-star mergers. Phys. Rev. C 92, 055805 (2015). https://doi.org/10.1103/PhysRevC.92.055805
- 52.
Mumpower, M.R., McLaughlin, G.C., Surman, R., Steiner, A.W.: Reverse engineering nuclear properties rare-earth abundances in the r process. J. Phys. G: Nucl. Part. Phys. 44(3), 034003 (2017). https://doi.org/10.1088/1361-6471/44/3/034003
- 53.
Möller, P., Sierk, A., Ichikawa, T., Sagawa, H.: Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002. http://www.sciencedirect.com/science/article/pii/S0092640X1600005X
- 54.
Aker, M., Altenmüller, K., Arenz, M., Babutzka, M., Barrett, J., et al.: Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett. 123(22) https://doi.org/10.1103/physrevlett.123.221802 (2019)
- 55.
Suhonen, J.: Theoretical studies of rare weak processes in nuclei. Phys. Scr. 89(5), 054032 (2014). http://stacks.iop.org/1402-4896/89/i=5/a=054032
- 56.
Gamage, N.D., Bhandari, R., Gamage, M.H., Sandler, R., Redshaw, M.: Identification and investigation of possible ultra-low Q-value β decay candidates. Hyperfine Interact. 240(1), https://doi.org/10.1007/s10751-019-1588-5 (2019)
- 57.
National Nuclear Data Center. https://www.nndc.bnl.gov/
- 58.
Huikari, J., Dendooven, P., Jokinen, A., Nieminen, A., Penttilä, H., Peräjärvi, K., Popov, A., Rinta-Antila, S., Äystö, J.: Production of neutron-deficient rare isotope beams at IGISOL on-line and off-line studies. Nucl. Instrum. Meth. Phys. Res. B 222(3-4), 632 (2004). https://doi.org/10.1016/j.nimb.2004.04.164
- 59.
Vilén, M., Kankainen, A., Baczyk, P., et al.: High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL. Phys. Rev. C 100, 054333 (2019). https://doi.org/10.1103/PhysRevC.100.054333
- 60.
Vilén, M.: Mass measurements and production of ions at IGISOL for the astrophysical r- and rp-processes. Ph.D. thesis, Jyväskylä.. http://urn.fi/URN:ISBN:978-951-39-7838-9 (2019)
- 61.
Weber, C., Elomaa, V.V., Ferrer, R., Fröhlich, C., et al.: Mass measurements in the vicinity of the rp-process and the νp-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP. Phys. Rev. C 78, 054310 (2008). https://doi.org/10.1103/PhysRevC.78.054310
- 62.
Xing, Y., et al.: Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes. Phys. Lett. B 781, 358 (2018). https://doi.org/10.1016/j.physletb.2018.04.009
- 63.
Eronen, T., Elomaa, V.V., Hager, U., Hakala, J., Jokinen, A., Kankainen, A., Rahaman, S., Rissanen, J., Weber, C., Äystö, J.: Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP. Nucl. Instrum. Meth. Phys. Res. B 266(19), 4527 (2008). https://doi.org/10.1016/j.nimb.2008.05.076. http://www.sciencedirect.com/science/article/pii/S0168583X08007696. Proceedings of the XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications
- 64.
Czerwinski, M., Sieja, K., Rzaca-Urban, T., Urban, W., Płochocki, A., Kurpeta, J., Wisniewski, J., et al.: Penning-trap-assisted study of excitations in 88Br populated in β decay of 88Se. Phys. Rev. C 95, 024321 (2017). https://doi.org/10.1103/PhysRevC.95.024321
- 65.
Kurpeta, J., Płochocki, A., Urban, W., Eronen, T., Jokinen, A., Kankainen, A., Kolhinen, V.S., Moore, I.D., Penttilä, H., Pomorski, M., Rinta-Antila, S., Rzaca-Urban, T., Wisniewski, J.: Excited levels in the multishaped 117Pd nucleus studied via β decay of 117Rh. Phys. Rev. C 98, 024318 (2018). https://doi.org/10.1103/PhysRevC.98.024318
- 66.
Lorenz, C., Sarmiento, L.G., Rudolph, D., Golubev, P., et al.: β decay of 127Cd and excited states in 127In. Phys. Rev. C 99, 044310 (2019). https://doi.org/10.1103/PhysRevC.99.044310
- 67.
Valencia, E., Tain, J.L., Algora, A., Agramunt, J., Estevez, E., et al.: Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb. Phys. Rev. C 95, 024320 (2017). https://doi.org/10.1103/PhysRevC.95.024320
- 68.
Guadilla, V., Algora, A., Tain, J.L., Agramunt, J., Jordan, D., Montaner-Pizá, A., Orrigo, S.E.A., Rubio, B., Valencia, E., Suhonen, J., Civitarese, O., Äystö, J., et al.: Experimental study of 100Tc beta decay with total absorption γ-ray spectroscopy. Phys. Rev. C 96, 014319 (2017). https://doi.org/10.1103/PhysRevC.96.014319
- 69.
Guadilla, V., Algora, A., Tain, J.L., Estienne, M., Fallot, M., Sonzogni, A.A., et al.: Large Impact of the Decay of Niobium Isomers on the Reactor \({\overline {\nu }}_{e}\) Summation Calculations. Phys. Rev. Lett. 122, 042502 (2019). https://doi.org/10.1103/PhysRevLett.122.042502
- 70.
Caballero-Folch, R., Dillmann, I., Agramunt, J., Taín, J.L., Algora, A., Äystö, J., et al.: First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement: The P2n value of 136Sb. Phys. Rev. C 98, 034310 (2018). https://doi.org/10.1103/PhysRevC.98.034310
- 71.
Penttilä, H., Elomaa, V.V., Eronen, T., Hakala, J., Jokinen, A., Kankainen, A., Moore, I.D., Rahaman, S., Rinta-Antila, S., Rissanen, J., Rubchenya, V., Saastamoinen, A., Weber, C., Äystö, J.: Fission yield studies at the IGISOL facility. Eur. Phys. J. A 48(4), 43 (2012). https://doi.org/10.1140/epja/i2012-12043-4
- 72.
Rakopoulos, V., Lantz, M., Solders, A., Al-Adili, A., Mattera, A., et al.: First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments. Phys. Rev. C 98, 024612 (2018). https://doi.org/10.1103/PhysRevC.98.024612
- 73.
Rakopoulos, V., Lantz, M., Pomp, S., Solders, A., Al-Adili, A., et al.: Isomeric fission yield ratios for odd-mass Cd and In isotopes using the phase-imaging ion-cyclotron-resonance technique. Phys. Rev. C 99, 014617 (2019). https://doi.org/10.1103/PhysRevC.99.014617
Acknowledgments
Open access funding provided by University of Jyväskylä (JYU). This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL). A.K., D.N., T.E. and A.R. acknowledge support from the Academy of Finland under projects No. 275389, 284516, 312544, 295207, and 306980. This work was supported by the European Union’s Horizon 2020 research and innovation program under grants No. 771036 (ERC CoG MAIDEN) and No. 654002 (ENSAR2). We thank for the bilateral mobility grant from the Institut Francais in Finland, the Embassy of France in Finland, the French Ministry of Higher Education and Research and the Finnish Society of Science and Letters. We are grateful for the mobility support from PICS MITICANS (Manipulation of Ions in Traps and Ion sourCes for Atomic and Nuclear Spectroscopy).
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Proceedings of PLATAN 2019, 1st International Conference, Merger of the Poznan Meeting on Lasers and Trapping Devices in Atomic Nuclei Research and the International Conference on Laser Probing, Mainz, Germany 19-24 May 2019
Edited by Krassimira Marinova, Michael Block, Klaus D.A. Wendt and Magdalena Kowalska
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kankainen, A., Eronen, T., Nesterenko, D. et al. Recent experiments at the JYFLTRAP Penning trap. Hyperfine Interact 241, 43 (2020). https://doi.org/10.1007/s10751-020-01711-5
Published:
Keywords
- Penning trap
- Atomic mass
- Nuclear binding energy
- Isomers