Recent experiments at the JYFLTRAP Penning trap

Abstract

The JYFLTRAP double Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility offers excellent possibilities for high-precision mass measurements of radioactive ions. Around 400 atomic masses, including around 50 isomeric states, have been measured since JYFLTRAP became operational. JYFLTRAP has also been used as a high-resolution mass separator for decay spectroscopy experiments as well as an ion counter for fission yield studies. In this contribution, an overview of recent activities at the JYFLTRAP Penning trap is given, with a focus on nuclei discussed in the PLATAN2019 meeting.

References

  1. 1.

    Blaum, K., Dilling, J., Nörtershäuser, W.: Precision atomic physics techniques for nuclear physics with radioactive beams. Phys. Scr. T152, 014017 (2013). https://doi.org/10.1088/0031-8949/2013/t152/014017

    ADS  Article  Google Scholar 

  2. 2.

    Dilling, J., Blaum, K., Brodeur, M., Eliseev, S.: Penning-Trap Mass Measurements in Atomic and Nuclear Physics. Annu. Rev. Nucl. Part. Sci. 68(1), 45 (2018). https://doi.org/10.1146/annurev-nucl-102711-094939

    ADS  Article  Google Scholar 

  3. 3.

    Eronen, T., Kankainen, A., Äystö, J.: Ion traps in nuclear physics-Recent results and achievements. Progr. Part. Nucl. Phys. 91, 259 (2016). https://doi.org/10.1016/j.ppnp.2016.08.001. http://www.sciencedirect.com/science/article/pii/S0146641016300436

    ADS  Article  Google Scholar 

  4. 4.

    Schatz, H.: Nuclear masses in astrophysics. Int. J. Mass Spectrom. 349-350, 181 (2013). https://doi.org/10.1016/j.ijms.2013.03.016. http://www.sciencedirect.com/science/article/pii/S1387380613001073. 100 years of Mass Spectrometry

    Article  Google Scholar 

  5. 5.

    Kolhinen, V., Kopecky, S., Eronen, T., Hager, U., Hakala, J., Huikari, J., Jokinen, A., Nieminen, A., Rinta-Antila, S., Szerypo, J., Äystö, J.: JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL. Nucl. Instrum. Meth. Phys. Res. Sect. A 528(3), 776 (2004). https://doi.org/10.1016/j.nima.2004.05.029. http://www.sciencedirect.com/science/article/pii/S0168900204009854

    ADS  Article  Google Scholar 

  6. 6.

    Eronen, T., Kolhinen, V.S., Elomaa, V.V., Gorelov, D., Hager, U., Hakala, J., Jokinen, A., Kankainen, A., Karvonen, P., Kopecky, S., Moore, I.D., Penttilä, H., Rahaman, S., Rinta-Antila, S., Rissanen, J., Saastamoinen, A., Szerypo, J., Weber, C., Äystö, J.: JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification. Eur. Phys. J. A 48(4), 46 (2012). https://doi.org/10.1140/epja/i2012-12046-1

    ADS  Article  Google Scholar 

  7. 7.

    Nesterenko, D.A., Eronen, T., Kankainen, A., Canete, L., Jokinen, A., Moore, I. D., Penttilä, H., Rinta-Antila, S., de Roubin, A., Vilen, M.: Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer. Eur. Phys. J. A 54 (9), 154 (2018). https://doi.org/10.1140/epja/i2018-12589-y

    ADS  Article  Google Scholar 

  8. 8.

    Äystö, J.: Development and applications of the IGISOL technique. Phys, Nucl. A 693(1-2), 477 (2001). https://doi.org/10.1016/s0375-9474(01)00923-x

    ADS  Article  Google Scholar 

  9. 9.

    Moore, I., Eronen, T., Gorelov, D., Hakala, J., Jokinen, A., Kankainen, A., Kolhinen, V., Koponen, J., Penttilä, H., Pohjalainen, I., Reponen, M., Rissanen, J., Saastamoinen, A., Rinta-Antila, S., Sonnenschein, V., Äystö, J.: Towards commissioning the new IGISOL-4 facility. Nucl. Instrum. Meth. Phys. Res. B 317, 208 (2013). https://doi.org/10.1016/j.nimb.2013.06.036

    ADS  Article  Google Scholar 

  10. 10.

    Vilén, M., Canete, L., Cheal, B., Giatzoglou, A., de Groote, R., de Roubin, A., Eronen, T., Geldhof, S., Jokinen, A., Kankainen, A., Moore, I., Nesterenko, D., Penttilä, H., Pohjalainen, I., Reponen, M., Rinta-Antila, S.: Mass measurements and production of ions at IGISOL for the astrophysical r- and rp-processes. Nucl. Instrum. Meth. Phys. Res. Sect. B https://doi.org/10.1016/j.nimb.2019.04.051http://www.sciencedirect.com/science/article/pii/S0168583X19302344 (2019)

  11. 11.

    Nieminen, A., Huikari, J., Jokinen, A., Äystö, J., Campbell, P., Cochrane, E.: Beam cooler for low-energy radioactive ions. Nucl. Instrum. Meth. Phys. Res. Sect. A 469(2), 244 (2001). https://doi.org/10.1016/s0168-9002(00)00750-6

    ADS  Article  Google Scholar 

  12. 12.

    Savard, G., Becker, S., Bollen, G., Kluge, H.J., Moore, R., Otto, T., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158(5), 247 (1991). http://www.sciencedirect.com/science/article/pii/0375960191910082

    ADS  Article  Google Scholar 

  13. 13.

    Gräff, G., Kalinowsky, H., Traut, J.: A direct determination of the proton electron mass ratio. Z. Phys. A 297(1), 35 (1980). https://doi.org/10.1007/bf01414243

    ADS  Article  Google Scholar 

  14. 14.

    König, M., Bollen, G., Kluge, H.J., Otto, T., Szerypo, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Proc. 142(1-2), 95 (1995). https://doi.org/10.1016/0168-1176(95)04146-c

    ADS  Article  Google Scholar 

  15. 15.

    Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Ramirez, E.M., Nesterenko, D.A., Novikov, Y. N., Schweikhard, L.: A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114(1), 107 (2014). https://doi.org/10.1007/s00340-013-5621-0

    ADS  Article  Google Scholar 

  16. 16.

    http://www.roentdek.de. MCP delay line detector, RoentDek Handels GmbH

  17. 17.

    Nesterenko, D., Canete, L., Eronen, T., Jokinen, A., Kankainen, A., Novikov, Y., Rinta-Antila, S., de Roubin, A., Vilen, M.: High-precision measurement of the mass difference between 102Pd and 102Ru. Int. J. Mass Spectrom. 435, 204 (2019). https://doi.org/10.1016/j.ijms.2018.10.038. http://www.sciencedirect.com/science/article/pii/S1387380618303257

    Article  Google Scholar 

  18. 18.

    Eronen, T., Hardy, J.C., Canete, L., Jokinen, A., Hakala, J., Kankainen, A., Kolhinen, V.S., Koponen, J., Moore, I.D., Murray, I.M., Penttilä, H., Pohjalainen, I., Poleshchuk, O., Reinikainen, J., Rinta-Antila, S., Soukouti, N., Voss, A., Äystö, J.: QEC value of the superallowed β emitter 42Sc. Phys. Rev. C 95, 025501 (2017). https://doi.org/10.1103/PhysRevC.95.025501

    ADS  Article  Google Scholar 

  19. 19.

    Nesterenko, D.A., Kankainen, A., et al.: High-precision mass measurements for the isobaric multiplet mass equation at A = 52. J. Phys. G: Nucl.Part. Phys. 44(6), 065103 (2017). https://doi.org/10.1088/1361-6471/aa67ae

    ADS  Article  Google Scholar 

  20. 20.

    Raduta, A.R., Gulminelli, F., Oertel, M.: Modification of magicity toward the dripline and its impact on electron-capture rates for stellar core collapse. Phys. Rev. C 93, 025803 (2016). https://doi.org/10.1103/PhysRevC.93.025803

    ADS  Article  Google Scholar 

  21. 21.

    Sullivan, C., O’Connor, E., Zegers, R.G.T., Grubb, T., Austin, S.M.: The sensitivity of core-collapse supernovae to nuclear electron capture. Astrophys. J. 816(1), 44 (2015). https://doi.org/10.3847/0004-637x/816/1/44

    ADS  Article  Google Scholar 

  22. 22.

    Giraud, S.: Mesures de masse autour du 78Ni et nouveau traitement de l’équilibre statistique nucléaire pour l’étude des supernovae á effondrement de coeur. Ph.D. thesis Caen (2019)

  23. 23.

    Broda, R., et al.: N = 40 Neutron Subshell Closure in the 68Ni Nucleus. Phys. Rev. Lett. 74, 868 (1995). https://doi.org/10.1103/PhysRevLett.74.868

    ADS  Article  Google Scholar 

  24. 24.

    Sorlin, O., Leenhardt, S., Donzaud, C., Duprat, J., Azaiez, F., Nowacki, F., Grawe, H., Dombrádi, Z., et al.: \(_{28}^{68}\)Ni40: Magicity versus Superfluidity. Phys. Rev. Lett. 88, 092501 (2002). https://doi.org/10.1103/PhysRevLett.88.092501

    ADS  Article  Google Scholar 

  25. 25.

    Rahaman, S., Hakala, J., Elomaa, V.V., Eronen, T., Hager, U., Jokinen, A., Kankainen, A., Moore, I.D., Penttilä, H., Rinta-Antila, S., Rissanen, J., Saastamoinen, A., Weber, C., Äystö, J.: Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28, N = 40. Eur. Phys. J. A 34(1), 5 (2007). https://doi.org/10.1140/epja/i2007-10489-y

    ADS  Article  Google Scholar 

  26. 26.

    Guénaut, C., et al.: High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N = 40. Phys. Rev. C 75, 044303 (2007). https://doi.org/10.1103/PhysRevC.75.044303

    ADS  Article  Google Scholar 

  27. 27.

    Block, M., et al.: Discovery of a Nuclear Isomer in 65Fe with PenningTrap Mass Spectrometry. Phys. Rev. Lett. 100, 132501 (2008). https://doi.org/10.1103/PhysRevLett.100.132501

    ADS  Article  Google Scholar 

  28. 28.

    Ferrer, R., Block, M., et al.: Penning trap mass spectrometry of neutron-rich Fe and Co isotopes around N = 40 with the LEBIT mass spectrometer. Phys. Rev. C 81, 044318 (2010). https://doi.org/10.1103/PhysRevC.81.044318

    ADS  Article  Google Scholar 

  29. 29.

    Izzo, C., et al.: Precision mass measurements of neutron-rich Co isotopes beyond N = 40. Phys. Rev. C 97, 014309 (2018). https://doi.org/10.1103/PhysRevC.97.014309

    ADS  Article  Google Scholar 

  30. 30.

    Canete, L., Giraud, S., Kankainen, A., Bastin, B., Nowacki, F., Poves, A., et al.: Precision mass measurements of 67Fe and 69,70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates. Phys. Rev. C Rapid Comm. (2020 )

  31. 31.

    Canete, L.: High precision mass measurements for nuclear astrophysics. Ph.D. thesis, Jyväskylä. http://urn.fi/URN:ISBN:978-951-39-7693-4 (2019)

  32. 32.

    Nowacki, F., Poves, A., Caurier, E., Bounthong, B.: Shape Coexistence in 78Ni as the Portal to the Fifth Island of Inversion. Phys. Rev. Lett. 117, 272501 (2016). https://doi.org/10.1103/PhysRevLett.117.272501

    ADS  Article  Google Scholar 

  33. 33.

    Pauwels, D., Ivanov, O., Bree, N., Büscher, J., Cocolios, T.E., Gentens, J., Huyse, M., Korgul, A., Kudryavtsev, Y., Raabe, R., Sawicka, M., Stefanescu, I., Van de Walle, J., Van den Bergh, P., Van Duppen, P., Walters, W.B.: Shape isomerism at N = 40: Discovery of a proton intruder state in 67Co. Phys. Rev. C 78, 041307 (2008). https://doi.org/10.1103/PhysRevC.78.041307

    ADS  Article  Google Scholar 

  34. 34.

    Arnould, M., Goriely, S., Takahashi, K.: The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450(4–6), 97 (2007). https://doi.org/10.1016/j.physrep.2007.06.002

    ADS  Article  Google Scholar 

  35. 35.

    Horowitz, C.J., et al.: r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G: Nucl. Part. Phys. 46(8), 083001 (2019). https://doi.org/10.1088/1361-6471/ab0849

    ADS  Article  Google Scholar 

  36. 36.

    Surman, R., Mumpower, M., Sinclair, R., Jones, K.L., Hix, W.R., McLaughlin, G.C.: Sensitivity studies for the weak r process: neutron capture rates. AIP Advances 4(4), 041008 (2014). https://doi.org/10.1063/1.4867191

    ADS  Article  Google Scholar 

  37. 37.

    Mumpower, M.R., Surman, R., Fang, D.L., Beard, M., Möller, P., Kawano, T., Aprahamian, A.: Impact of individual nuclear masses on r-process abundances. Phys. Rev. C 92, 035807 (2015). https://doi.org/10.1103/PhysRevC.92.035807

    ADS  Article  Google Scholar 

  38. 38.

    Breitenfeldt, M., Borgmann, C., et al.: Approaching the N = 82 shell closure with mass measurements of Ag and Cd isotopes. Phys. Rev. C 81, 034313 (2010). https://doi.org/10.1103/PhysRevC.81.034313

    ADS  Article  Google Scholar 

  39. 39.

    Knöbel, R., Diwisch, M., Geissel, H., Litvinov, Y.A., Patyk, Z., Plaß, W.R., Scheidenberger, C., Sun, B., Weick, H., et al.: New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI. Eur. Phys. J. A 52(5), 138 (2016). https://doi.org/10.1140/epja/i2016-16138-6

    ADS  Article  Google Scholar 

  40. 40.

    Wang, M., Audi, G., Kondev, F., Huang, W., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41(3), 030003 (2017). http://stacks.iop.org/1674-1137/41/i=3/a=030003

    ADS  Article  Google Scholar 

  41. 41.

    Batchelder, J.C., Brewer, N.T., Goans, R.E., Grzywacz, R., Griffith, B.O., Jost, C., Korgul, A., Liu, S.H., Paulauskas, S.V., Spejewski, E.H., Stracener, D.W.: Low-lying collective states in 120Cd populated by β decay of 120Ag: Breakdown of the anharmonic vibrator model at the three-phonon level. Phys. Rev. C 86, 064311 (2012). https://doi.org/10.1103/PhysRevC.86.064311

    ADS  Article  Google Scholar 

  42. 42.

    Audi, G., Kondev, F.G., Wang, M., Huang, W., Naimi, S.: The NUBASE 2016 evaluation of nuclear properties. Chin. Phys. C 41(3), 030001 (2017). https://doi.org/10.1088/1674-1137/41/3/030001

    ADS  Article  Google Scholar 

  43. 43.

    Vilen, M., Kelly, J.M., Kankainen, A., Brodeur, M., et al.: Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations. Phys. Rev. Lett. 120, 262701 (2018). https://doi.org/10.1103/PhysRevLett.120.262701

    ADS  Article  Google Scholar 

  44. 44.

    Vilén, M., Kelly, J.M., Kankainen, A., Brodeur, M., et al.: Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP. Phys. Rev. C (2020)

  45. 45.

    Greenwood, R., Putnam, M.: Measurement of β end-point energies using a Ge detector with Monte Carlo generated response functions. Nucl. Instrum. Meth. Phys. Res. Sect. A 337 (1), 106 (1993). https://doi.org/10.1016/0168-9002(93)91142-A. http://www.sciencedirect.com/science/article/pii/016890029391142A

    ADS  Article  Google Scholar 

  46. 46.

    Shibata, M., Shindou, T., Kawade, K., Kojima, V., Taniguchi, A., Kawase, Y., Ichikawa, S. In: J. Äystö, Dendooven, P., Jokinen, A., Leino, M. (eds.) : in Exotic Nuclei and Atomic Masses. Proceedings of the Third International Conference on Exotic Nuclei and Atomic Masses ENAM 2001 Hämeenlinna, Finland, 2–7 July 2001, p 479. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-55560-2 ISBN: 978-3-540-00101-0

  47. 47.

    Orford, R., et al.: Precision mass measurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018). https://doi.org/10.1103/PhysRevLett.120.262702

    ADS  Article  Google Scholar 

  48. 48.

    Goriely, S., Sida, J.L., Lemaître, J.F., Panebianco, S., Dubray, N., Hilaire, S., Bauswein, A., Janka, H.T.: New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements. Phys. Rev. Lett. 111, 242502 (2013). https://doi.org/10.1103/PhysRevLett.111.242502

    ADS  Article  Google Scholar 

  49. 49.

    Surman, R., Engel, J., Bennett, J.R., Meyer, B.S.: Source of the Rare-Earth Element Peak in r-Process Nucleosynthesis. Phys. Rev. Lett. 79, 1809 (1997). https://doi.org/10.1103/PhysRevLett.79.1809

    ADS  Article  Google Scholar 

  50. 50.

    Mumpower, M.R., McLaughlin, G.C., Surman, R.: Formation of the rare-earth peak: Gaining insight into late-time r-process dynamics. Phys. Rev. C 85, 045801 (2012). https://doi.org/10.1103/PhysRevC.85.045801

    ADS  Article  Google Scholar 

  51. 51.

    Mendoza-Temis, J.D.J., Wu, M.R., Langanke, K., Martínez-Pinedo, G., Bauswein, A., Janka, H.T.: Nuclear robustness of the r process in neutron-star mergers. Phys. Rev. C 92, 055805 (2015). https://doi.org/10.1103/PhysRevC.92.055805

    ADS  Article  Google Scholar 

  52. 52.

    Mumpower, M.R., McLaughlin, G.C., Surman, R., Steiner, A.W.: Reverse engineering nuclear properties rare-earth abundances in the r process. J. Phys. G: Nucl. Part. Phys. 44(3), 034003 (2017). https://doi.org/10.1088/1361-6471/44/3/034003

    ADS  Article  Google Scholar 

  53. 53.

    Möller, P., Sierk, A., Ichikawa, T., Sagawa, H.: Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002. http://www.sciencedirect.com/science/article/pii/S0092640X1600005X

    ADS  Article  Google Scholar 

  54. 54.

    Aker, M., Altenmüller, K., Arenz, M., Babutzka, M., Barrett, J., et al.: Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett. 123(22) https://doi.org/10.1103/physrevlett.123.221802 (2019)

  55. 55.

    Suhonen, J.: Theoretical studies of rare weak processes in nuclei. Phys. Scr. 89(5), 054032 (2014). http://stacks.iop.org/1402-4896/89/i=5/a=054032

    ADS  Article  Google Scholar 

  56. 56.

    Gamage, N.D., Bhandari, R., Gamage, M.H., Sandler, R., Redshaw, M.: Identification and investigation of possible ultra-low Q-value β decay candidates. Hyperfine Interact. 240(1), https://doi.org/10.1007/s10751-019-1588-5 (2019)

  57. 57.

    National Nuclear Data Center. https://www.nndc.bnl.gov/

  58. 58.

    Huikari, J., Dendooven, P., Jokinen, A., Nieminen, A., Penttilä, H., Peräjärvi, K., Popov, A., Rinta-Antila, S., Äystö, J.: Production of neutron-deficient rare isotope beams at IGISOL on-line and off-line studies. Nucl. Instrum. Meth. Phys. Res. B 222(3-4), 632 (2004). https://doi.org/10.1016/j.nimb.2004.04.164

    ADS  Article  Google Scholar 

  59. 59.

    Vilén, M., Kankainen, A., Baczyk, P., et al.: High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL. Phys. Rev. C 100, 054333 (2019). https://doi.org/10.1103/PhysRevC.100.054333

    ADS  Article  Google Scholar 

  60. 60.

    Vilén, M.: Mass measurements and production of ions at IGISOL for the astrophysical r- and rp-processes. Ph.D. thesis, Jyväskylä.. http://urn.fi/URN:ISBN:978-951-39-7838-9 (2019)

  61. 61.

    Weber, C., Elomaa, V.V., Ferrer, R., Fröhlich, C., et al.: Mass measurements in the vicinity of the rp-process and the νp-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP. Phys. Rev. C 78, 054310 (2008). https://doi.org/10.1103/PhysRevC.78.054310

    ADS  Article  Google Scholar 

  62. 62.

    Xing, Y., et al.: Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes. Phys. Lett. B 781, 358 (2018). https://doi.org/10.1016/j.physletb.2018.04.009

    ADS  Article  Google Scholar 

  63. 63.

    Eronen, T., Elomaa, V.V., Hager, U., Hakala, J., Jokinen, A., Kankainen, A., Rahaman, S., Rissanen, J., Weber, C., Äystö, J.: Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP. Nucl. Instrum. Meth. Phys. Res. B 266(19), 4527 (2008). https://doi.org/10.1016/j.nimb.2008.05.076. http://www.sciencedirect.com/science/article/pii/S0168583X08007696. Proceedings of the XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications

    ADS  Article  Google Scholar 

  64. 64.

    Czerwinski, M., Sieja, K., Rzaca-Urban, T., Urban, W., Płochocki, A., Kurpeta, J., Wisniewski, J., et al.: Penning-trap-assisted study of excitations in 88Br populated in β decay of 88Se. Phys. Rev. C 95, 024321 (2017). https://doi.org/10.1103/PhysRevC.95.024321

    ADS  Article  Google Scholar 

  65. 65.

    Kurpeta, J., Płochocki, A., Urban, W., Eronen, T., Jokinen, A., Kankainen, A., Kolhinen, V.S., Moore, I.D., Penttilä, H., Pomorski, M., Rinta-Antila, S., Rzaca-Urban, T., Wisniewski, J.: Excited levels in the multishaped 117Pd nucleus studied via β decay of 117Rh. Phys. Rev. C 98, 024318 (2018). https://doi.org/10.1103/PhysRevC.98.024318

    ADS  Article  Google Scholar 

  66. 66.

    Lorenz, C., Sarmiento, L.G., Rudolph, D., Golubev, P., et al.: β decay of 127Cd and excited states in 127In. Phys. Rev. C 99, 044310 (2019). https://doi.org/10.1103/PhysRevC.99.044310

    ADS  Article  Google Scholar 

  67. 67.

    Valencia, E., Tain, J.L., Algora, A., Agramunt, J., Estevez, E., et al.: Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb. Phys. Rev. C 95, 024320 (2017). https://doi.org/10.1103/PhysRevC.95.024320

    ADS  Article  Google Scholar 

  68. 68.

    Guadilla, V., Algora, A., Tain, J.L., Agramunt, J., Jordan, D., Montaner-Pizá, A., Orrigo, S.E.A., Rubio, B., Valencia, E., Suhonen, J., Civitarese, O., Äystö, J., et al.: Experimental study of 100Tc beta decay with total absorption γ-ray spectroscopy. Phys. Rev. C 96, 014319 (2017). https://doi.org/10.1103/PhysRevC.96.014319

    ADS  Article  Google Scholar 

  69. 69.

    Guadilla, V., Algora, A., Tain, J.L., Estienne, M., Fallot, M., Sonzogni, A.A., et al.: Large Impact of the Decay of Niobium Isomers on the Reactor \({\overline {\nu }}_{e}\) Summation Calculations. Phys. Rev. Lett. 122, 042502 (2019). https://doi.org/10.1103/PhysRevLett.122.042502

    ADS  Article  Google Scholar 

  70. 70.

    Caballero-Folch, R., Dillmann, I., Agramunt, J., Taín, J.L., Algora, A., Äystö, J., et al.: First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement: The P2n value of 136Sb. Phys. Rev. C 98, 034310 (2018). https://doi.org/10.1103/PhysRevC.98.034310

    ADS  Article  Google Scholar 

  71. 71.

    Penttilä, H., Elomaa, V.V., Eronen, T., Hakala, J., Jokinen, A., Kankainen, A., Moore, I.D., Rahaman, S., Rinta-Antila, S., Rissanen, J., Rubchenya, V., Saastamoinen, A., Weber, C., Äystö, J.: Fission yield studies at the IGISOL facility. Eur. Phys. J. A 48(4), 43 (2012). https://doi.org/10.1140/epja/i2012-12043-4

    ADS  Article  Google Scholar 

  72. 72.

    Rakopoulos, V., Lantz, M., Solders, A., Al-Adili, A., Mattera, A., et al.: First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments. Phys. Rev. C 98, 024612 (2018). https://doi.org/10.1103/PhysRevC.98.024612

    ADS  Article  Google Scholar 

  73. 73.

    Rakopoulos, V., Lantz, M., Pomp, S., Solders, A., Al-Adili, A., et al.: Isomeric fission yield ratios for odd-mass Cd and In isotopes using the phase-imaging ion-cyclotron-resonance technique. Phys. Rev. C 99, 014617 (2019). https://doi.org/10.1103/PhysRevC.99.014617

    ADS  Article  Google Scholar 

Download references

Acknowledgments

Open access funding provided by University of Jyväskylä (JYU). This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL). A.K., D.N., T.E. and A.R. acknowledge support from the Academy of Finland under projects No. 275389, 284516, 312544, 295207, and 306980. This work was supported by the European Union’s Horizon 2020 research and innovation program under grants No. 771036 (ERC CoG MAIDEN) and No. 654002 (ENSAR2). We thank for the bilateral mobility grant from the Institut Francais in Finland, the Embassy of France in Finland, the French Ministry of Higher Education and Research and the Finnish Society of Science and Letters. We are grateful for the mobility support from PICS MITICANS (Manipulation of Ions in Traps and Ion sourCes for Atomic and Nuclear Spectroscopy).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anu Kankainen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of PLATAN 2019, 1st International Conference, Merger of the Poznan Meeting on Lasers and Trapping Devices in Atomic Nuclei Research and the International Conference on Laser Probing, Mainz, Germany 19-24 May 2019

Edited by Krassimira Marinova, Michael Block, Klaus D.A. Wendt and Magdalena Kowalska

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kankainen, A., Eronen, T., Nesterenko, D. et al. Recent experiments at the JYFLTRAP Penning trap. Hyperfine Interact 241, 43 (2020). https://doi.org/10.1007/s10751-020-01711-5

Download citation

Keywords

  • Penning trap
  • Atomic mass
  • Nuclear binding energy
  • Isomers