Abstract
The in-source laser photoionization spectroscopy was applied to study neutron-deficient Bi isotopes. Data analysis and accuracy-related aspects of this technique are discussed. The accuracy of the peak position evaluation is estimated. An “integration method” for nuclear spin determination in the case of partially resolved hyperfine spectra is discussed in detail.
This is a preview of subscription content, access via your institution.
References
- 1.
Marsh B., et al.: Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163 (2018). https://doi.org/10.1038/s41567-018-0292-8
- 2.
Cocolios T.E., et al.: Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes. Phys. Rev. Lett. 106, 052503 (2011). https://doi.org/10.1103/PhysRevLett.106.052503
- 3.
Seliverstov M.D., et al.: Charge radii of odd-A 191211Po isotopes. Phys. Lett. B 719, 362 (2013). https://doi.org/10.1016/j.physletb.2013.01.043
- 4.
Seliverstov M.D., et al.: Electromagnetic moments of odd-A 193203211 Po isotopes”. Phys. Rev. C 89, 034323 (2014). https://doi.org/10.1103/PhysRevC.89.034323
- 5.
De Witte H., et al.: Nuclear Charge Radii of Neutron-Deficient Lead Isotopes Beyond N = 104 Midshell Investigated by In-Source Laser Spectroscopy. Phys. Rev. Lett 98, 112502 (2007). https://doi.org/10.1103/PhysRevLett.98.112502
- 6.
Seliverstov M.D., et al.: Charge radii and magnetic moments of odd-A 183 − 189Pb isotopes. Eur. Phys. J. A 41, 315 (2009). https://doi.org/10.1140/epja/i2009-10817-3
- 7.
Billowes J., Campbell P.: Laser spectroscopy of the bismuth isotopes. Hyperfine Interact. 129, 289 (2000). https://doi.org/10.1023/A:1012674119442
- 8.
Barzakh A.E., Fedorov D.V., Ivanov V.S., Molkanov P.L., Moroz F.V., Orlov S.Y., Panteleev V.N., Seliverstov M.D., Volkov Y.M.: Onset of deformation in neutron-deficient Bi isotopes studied by laser spectroscopy. Phys. Rev. C 95, 044324 (2017). https://doi.org/10.1103/PhysRevC.95.044324
- 9.
Barzakh A.E., Fedorov D.V., Ivanov V.S., Molkanov P.L., Moroz F.V., Orlov S.Y., Panteleev V.N., Seliverstov M.D., Volkov Y.M.: Laser spectroscopy studies of intruder states in 193195197Bi. Phys. Rev. C 94, 024334 (2016). https://doi.org/10.1103/PhysRevC.94.024334
- 10.
Alkhazov G.D., et al.: A new highly efficient method of atomic spectroscopy for nuclides far from stability. Nucl. Instrum. Methods B 69, 517 (1992). https://doi.org/10.1016/0168-583X(92)95309-F
- 11.
Marsh B.A., et al.: New developments of the in-source spectroscopy method at RILIS/ISOLDE. Nucl. Instrum. Methods B 317, 550 (2013). https://doi.org/10.1016/j.nimb.2013.07.070
- 12.
Sels S., et al.: Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations. Phys. Rev. C 99, 044306 (2019). https://doi.org/10.1103/PhysRevC.99.044306
- 13.
Catherall R., et al.: The ISOLDE facility. J. Phys. G 44, 094002 (2017). https://doi.org/10.1088/1361-6471/aa7eba
- 14.
Fedosseev1 V.N., Chrysalidis K., Goodacre T.D., Marsh B., Rothe S., Seiffert C., Wendt K.: Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE. J. Phys. G 44, 084006 (2017). https://doi.org/10.1088/1361-6471/aa78e0
- 15.
Rothe S., Fedosseev V.N., Kron T., Marsh B.A., Rossel R.E., Wendt K.D.A.: Narrow linewidth operation of the RILIS titanium: Sapphire laser at ISOLDE/CERN. Nucl. Instr. Meth. B 317, 561 (2013). https://doi.org/10.1016/j.nimb.2013.08.058
- 16.
Rothe S., Day Goodacre T., Fedorov D.V., Fedosseev V.N., Marsh B.A., Molkanov P.L., Rossel R.E., Seliverstov M.D., Veinhard M., Wendt K.D.A.: Laser ion beam production at CERN-ISOLDE: New features More possibilities. Nucl. Instr. Meth. B 376, 91 (2016). https://doi.org/10.1016/j.nimb.2016.02.024
- 17.
Cubiss J.G., et al.: Charge radii and electromagnetic moments of 195211At. Phys. Rev. C 97, 054327 (2018). https://doi.org/10.1103/PhysRevC.97.054327
- 18.
Hull R.J., Brink G.O.: Hyperfine Structure of Bi209. Phys. Rev. A 1, 685 (1970). https://doi.org/10.1103/PhysRevA.1.685
Acknowledgments
This work was supported by RFBR according to the research project No 19-02-00005. This project has received funding from the EU Horizon 2020 Research and Innovation programme under grant agreement No 654002.
Author information
Affiliations
Consortia
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Proceedings of PLATAN 2019, 1st International Conference, Merger of the Poznan Meeting on Lasers and Trapping Devices in Atomic Nuclei Research and the International Conference on Laser Probing, Mainz, Germany 19-24 May 2019
Edited by Krassimira Marinova, Michael Block, Klaus D.A. Wendt and Magdalena Kowalska
Rights and permissions
About this article
Cite this article
Seliverstov, M., Barzakh, A., Ahmed, R. et al. In-source laser photoionization spectroscopy of Bi isotopes: accuracy of the technique and methods of data analysis. Hyperfine Interact 241, 40 (2020). https://doi.org/10.1007/s10751-020-01710-6
Published:
Keywords
- In-source laser photoionization spectroscopy Nuclear charge radii Nuclear electromagnetic moments