Skip to main content
Log in

Design and characterization of Ion sources for CHIP-TRAP

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

At Central Michigan University, we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) for precise mass measurements with stable and long-lived isotopes. Ions will be produced using external ion sources and then transported to the Penning trap at low energy using electrostatic ion optics. Ion sources that will be utilized with CHIP-TRAP include a laser ablation ion source (LAS) that has already been commissioned, and a low current Penning ion trap (PIT) source that is currently being developed. The LAS enables ion production from solid targets via ablation and ionization with a high-powered laser pulse. The PIT source is a novel Penning ionization gauge (PIG) type source, consisting of a 0.55 T NdFeB ring magnet, cylindrical Penning trap, and low current thermal electron emitter that enables ion production via electron impact ionization of gaseous samples. For both ion sources, small bunches of ∼100 – 1000 ions can be produced from a minimal sample of source material. The ion bunches are then transported along the CHIP-TRAP beamline, where time-of-flight mass filtering can be performed before they are captured in the CHIP-TRAP Penning traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kluge, H.J.: Penning trap mass spectrometry of radionuclides. Int. J. Mass Spectrom. 349–350, 26 (2013)

    Article  Google Scholar 

  2. Heiße, F., Köhler-Langes, F., Rau, S., Hou, J., Junck, S., Kracke, A., Mooser, A., Quint, W., Ulmer, S., Werth, G., Blaum, K., Sturm, S.: High-precision measurement of the proton’s atomic mass. Phys. Rev. Lett. 119, 033001 (2017)

    Article  ADS  Google Scholar 

  3. Zafonte, S.L., Van Dyck, R.S.Jr: Ultra-precise single-ion atomic mass measurements on deuterium and helium-3. Metrologia 52, 280 (2015)

    Article  ADS  Google Scholar 

  4. Myers, E.G., Wagner, A., Kracke, H., Wesson, B.A.: Atomic masses of tritium and helium-3. Phys. Rev. Lett. 114, 013003 (2015)

    Article  ADS  Google Scholar 

  5. Hamzeloui, S., Smith, J.A., Fink, D.J., Myers, E.G.: Precision mass ratio of 3He+ to HD+. Phys. Rev. A 96, 060501 (2017)

    Article  ADS  Google Scholar 

  6. Smith, J.A., Hamzeloui, S., Fink, D.J., Myers, E.G.: Rotational energy as mass in H3+ and lower limits on the atomic masses of D and 3He. Phys. Rev. Lett. 120, 143002 (2018)

    Article  ADS  Google Scholar 

  7. Van Dyck, R.S., Zafonte, S.L., Van Liew, S., Pinegar, D.B., Schwinberg, P.B.: Ultraprecise atomic mass measurement of the alpha particle and 4He. Phys. Rev. Lett. 92, 220802 (2004)

    Article  Google Scholar 

  8. Block, M., Ackermann, D., Blaum, K., Droese, C., Dworschak, M., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F., et al.: Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  9. Ramirez, E.M., Ackermann, D., Blaum, K., Block, M., Droese, C., Düllmann, C. E., Dworschak, M., Eibach, M., Eliseev, S., Haettner, E., Herfurth, F., Heßberger, F.P., Hofmann, S., Ketelaer, J., Marx, G., Mazzocco, M., Nesterenko, D., Novikov, Y.N., Plaß, W.R., Rodríguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P.G., Weber, C.: Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012)

    Article  ADS  Google Scholar 

  10. Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  11. Brown, L.S., Gabrielse, G.: Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  12. Redshaw, M., Bryce, R.A., Hawks, P., Gamage, N.D., Hunt, C., Kandegedara, R.M.E.B., Ratnayake, I.S., Sharp, L.: Status and outlook of CHIP-TRAP: The Central Michigan University High Precision Penning Trap. Nucl. Instrum. Meth. B 376, 302 (2016)

    Article  ADS  Google Scholar 

  13. Gastaldo, L., Blaum, K., Dörr, A., Düllmann, C.E., Eberhardt, K., Eliseev, S., Enss, C., Faessler, A., Fleischmann, A., Kempf, S., et al.: The electron capture 163Ho experiment ECHo. J. Low Temp. Phys. 176, 876 (2014)

    Article  ADS  Google Scholar 

  14. Alpert, B., Balata, M., Bennett, D., Biasotti, M., Boragno, C., Brofferio, C., Ceriale, V., Corsini, D., Day, P., De Gerone, M., et al.: HOLMES The electron capture decay of 163Ho to measure the electron neutrino mass with sub-eV sensitivity. Eur. Phys. J. C 75, 112 (2015)

    Article  ADS  Google Scholar 

  15. Croce, M.P., Rabin, M.W., Mocko, V., Kunde, G.J., Birnbaum, E.R., Bond, E., Engle, J.W., Hoover, A.S., Nortier, F.M., Pollington, A.D., et al.: Development of holmium-163 electron-capture spectroscopy with transition-edge sensors. J. Low Temp. Phys. 184, 958 (2016)

    Article  ADS  Google Scholar 

  16. Dewey, M.S., E.G.K. Jr., Deslattes, R.D., Börner, H.G., Jentschel, M., Doll, C., Mutti, P.: Precision measurement of the 29Si, 33S, and 36Cl binding energies. Phys. Rev. C 73, 044303 (2006)

    Article  ADS  Google Scholar 

  17. Bradbury, N.E., Nielsen, R.A.: Absolute values of the electron mobility in hydrogen. Phys. Rev. 49, 388 (1936)

    Article  ADS  Google Scholar 

  18. Brunner, T., Mueller, A., O’Sullivan, K., Simon, M., Kossick, M., Ettenauer, S., Gallant, A., Mané, E., Bishop, D., Good, M., Gratta, G., Dilling, J.: A large Bradbury Nielsen ion gate with flexible wire spacing based on photo-etched stainless steel grids and its characterization applying symmetric and asymmetric potentials. Int. J. Mass Spectrom. 309, 97 (2012)

    Article  Google Scholar 

  19. Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, C. E., Enss, C., Filianin, P.E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Y.N., Rischka, A., Schüssler, R. X., Schweikhard, L., Türler, A.: Direct Measurement of the Mass difference of 163Ho and 163Dy solves the Q - Value Puzzle for the Neutrino Mass Determination. Phys. Rev. Lett. 115, 062501 (2015)

    Article  ADS  Google Scholar 

  20. Schneider, F., Beyer, T., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, C.E., Eberhardt, K., Eibach, M., Eliseev, S., Grund, J., Köster, U., Nagy, S., Novikov, Y.N., Renisch, D., Türler, A., Wendt, K.: Preparatory studies for a high-precision Penning-trap measurement of the 163Ho electron capture Q-value. Eur. Phys. J. A 51, 89 (2015)

    Article  ADS  Google Scholar 

  21. Blaum, K., Bollen, G., Herfurth, F., Kellerbauer, A., Kluge, H. -J., Kuckein, M., Sauvan, E., Scheidenberger, C., Schweikhard, L.: Carbon clusters for absolute mass measurements at ISOLTRAP. Eur. Phys. J. A 15, 245 (2002)

    Article  ADS  Google Scholar 

  22. Chaudhuri, A., Block, M., Eliseev, S., Ferrer, R., Herfurth, F., Martín, A., Marx, G., Mukherjee, M., Rauth, C., Schweikhard, L., Vorobjev, G.: Carbon-cluster mass calibration at SHIPTRAP. Eur. Phys. J. D 45, 47 (2007)

    Article  ADS  Google Scholar 

  23. Elomaa, V.V., Eronen, T., Hager, U., Jokinen, A., Kessler, T., Moore, I., Rahaman, S., Weber, C., Äystö, J.: Development of a carbon-cluster ion source for JYFLTRAP. Nucl. Instrum. Meth. B 266, 4425 (2008)

    Article  ADS  Google Scholar 

  24. Scielzo, N.D., Caldwell, S., Savard, G., Clark, J.A., Deibel, C.M., Fallis, J., Gulick, S., Lascar, D., Levand, A.F., Li, G., Mintz, J., Norman, E.B., Sharma, K.S., Sternberg, M., Sun, T., Van Schelt, J.: Double- β-decay Q values of 130Te, 128Te, and 120Te. Phys. Rev. C 80, 025501 (2009)

    Article  ADS  Google Scholar 

  25. Smorra, C., Blaum, K., Eberhardt, K., Eibach, M., Ketelaer, J., Ketter, J., Knuth, K., Nagy, S.: A carbon-cluster laser ion source for TRIGATRAP. J. Phys. B:, At. Mol. Opt. 42, 154028 (2009)

    Article  ADS  Google Scholar 

  26. Izzo, C., Bollen, G., Bustabad, S., Eibach, M., Gulyuz, K., Morrissey, D.J., Redshaw, M., Ringle, R., Sandler, R., Schwarz, S., Valverde, A.A.: A laser ablation source for offline ion production at LEBIT. Nucl. Instrum. Meth. B 376, 60 (2015)

    Article  ADS  Google Scholar 

  27. Bustabad, S., Bollen, G., Brodeur, M., Lincoln, D.L., Novario, S.J., Redshaw, M., Ringle, R., Schwarz, S., Valverde, A.A.: First direct determination of the 48Ca double- β decay Q value. Phys. Rev. C 88, 022501 (2013)

    Article  ADS  Google Scholar 

  28. Gulyuz, K., Ariche, J., Bollen, G., Bustabad, S., Eibach, M., Izzo, C., Novario, S.J., Redshaw, M., Ringle, R., Sandler, R., Schwarz, S., Valverde, A.A.: Determination of the direct double-β decay Q value of 96Zr and atomic masses of 90 − 92,94,96Zr and 92,94 − 98,100Mo. Phys. Rev. C 91, 055501 (2015)

    Article  ADS  Google Scholar 

  29. Eibach, M., Bollen, G., Gulyuz, K., Izzo, C., Redshaw, M., Ringle, R., Sandler, R., Valverde, A.A.: Double resonant enhancement in the neutrinoless double-electron capture of 190Pt. Phys. Rev. C 94, 015502 (2016)

    Article  ADS  Google Scholar 

  30. Gamage, N.D., Bollen, G., Eibach, M., Gulyuz, K., Izzo, C., Kandegedara, R.M.E.B., Redshaw, M., Ringle, R., Sandler, R., Valverde, A.A.: Precise determination of the 113Cd fourth-forbidden non-unique β-decay Q value. Phys. Rev. C 94, 025505 (2016)

    Article  ADS  Google Scholar 

  31. Kandegedara, R.M.E.B., Bollen, G., Eibach, M., Gamage, N.D., Gulyuz, K., Izzo, C., Redshaw, M., Ringle, R., Sandler, R., Valverde, A.A.: β-decay Q values among the A = 50 Ti-V-Cr isobaric triplet and atomic masses of 46,47,49,50Ti, 50,51V and 50,52−− 54Cr. Phys. Rev. C 96, 044321 (2017)

    Article  ADS  Google Scholar 

  32. Eibach, M., Beyer, T., Blaum, K., Block, M., Düllmann, C.E., Eberhardt, K., Grund, J., Nagy, S., Nitsche, H., Nörtershäuser, W., Renisch, D., Rykaczewski, K.P., Schneider, F., Smorra, C., Vieten, J., Wang, M., Wendt, K.: Direct high-precision mass measurements on 241,243Am, 244Pu, and 249 Cf. Phys. Rev. C 89, 064318 (2014)

    Article  ADS  Google Scholar 

  33. Rainer, D.: Htw hochtemperatur-werkstoffe gmbh. http://www.htw-germany.com (2006)

  34. Wolf, B.: Handbook of ion sources (2017)

  35. K&J Magnetics, Inc.: Strong neodymium magnets. https://www.kjmagnetics.com (2019)

  36. Ted Pella, Inc.: Microscopy products for science and industry. http://www.tedpella.com (2019)

  37. Gabrielse, G., Mackintosh, F.: Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass Spectrom. Ion Process. 57, 1 (1984)

    Article  ADS  Google Scholar 

  38. Dahl, D.: SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200, 3 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0015927, by the National Science Foundation under Contracts No. PHY-1307233, and PHY-1607429, and by Central Michigan University. We would like to thank Georg Bollen, Ryan Ringle and other members of the LEBIT group for useful discussions on ion sources, low energy beam transport, and Penning traps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Horana Gamage.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horana Gamage, M., Arnold, A.L., Bhandari, R. et al. Design and characterization of Ion sources for CHIP-TRAP. Hyperfine Interact 240, 93 (2019). https://doi.org/10.1007/s10751-019-1617-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1617-4

Keywords

Navigation