Skip to main content
Log in

Development of the St. Benedict Paul Trap at the Nuclear Science Laboratory

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2019

This article has been updated

Abstract

There are various tests of the Standard Model aimed at probing new physics. One such test is to check the unitarity of the Cabbibo-Kobayashi-Masakawa matrix, with the most precise result given by the normalization of the top row. The precision of this result is limited by the uncertainty of the Vud and Vus elements. The most precise result for Vud is currently derived from the ensemble of superallowed 0+ → 0+ nuclear β decays, but the determination from other transitions is desirable to check theoretical calculations and the potential presence of unknown systematic contributions. Other candidates include neutron decay, pion decay, and the ensemble of nuclear mirror decays. While the neutron and pion decay present their own unique experimental challenges, the group of mirror decays require the precise determination of the Fermi to Gamow-Teller mixing ratio. This value can be extracted from a measurement of the β-ν angular correlation parameter, αβν, which is currently only known for five mirror decays. A new ion trapping system, St. Benedict (Superallowed Transition Beta-Neutrino Decay-Ion-Coincidence Trap), to be located in the Nuclear Science Laboratory at the University of Notre Dame is currently under construction and will ultimately aim to extract αβν for more mirror decays. The focus of this work is on simulations that will guide the design of the Paul trap which will be used for the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 20 August 2019

    The original version of this article was revised because this article was published with five instances of the word neutrino spelled out in math mode ($\neutrino$ in text) which should be the symbol nu ($\nu$).

References

  1. Severijns, N., Naviliat-Cuncic, O.: Symmetry tests in nuclear beta decay. Annu. Rev. Nucl. Part. Sci. 61(1), 23–46 (2011)

    Article  ADS  Google Scholar 

  2. Hobbs, J.D., Neubauer, M.S., Willenbrock, S.: Tests of the standard electroweak model at the energy frontier. Rev. Mod. Phys. 84, 1477–1526 (2012)

    Article  ADS  Google Scholar 

  3. Naviliat-Cuncic, O., González-Alonso, M.: Prospects for precision measurements in nuclear β decay in the lhc era. Annalen der Physik 525, 8–9, 600–619 (2013)

    Article  Google Scholar 

  4. Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957)

    Article  ADS  Google Scholar 

  5. Fabian, X., Ban, G., Boussaïd, R., Breitenfeldt, M., Couratin, C., Delahaye, P., Durand, D., Finlay, P., Fléchard, X., Guillon, B., Lemière, Y., Leredde, A., Liénard, E., Méry, A., Naviliat-Cuncic, O., Pierre, E., Porobic, T., Quéméner, G., Rodríguez, D., Severijns, N., Thomas, J.C., Van Gorp, S.: Precise measurement of the angular correlation parameter a βν in the β decay of 35ar with lpctrap. EPJ Web of Conferences 66, 08002 (2014)

    Article  Google Scholar 

  6. Sternberg, M.G., Segel, R., Scielzo, N.D., Savard, G., Clark, J.A., Bertone, P.F., Buchinger, F., Burkey, M., Caldwell, S., Chaudhuri, A., Crawford, J.E., Deibel, C.M., Greene, J., Gulick, S., Lascar, D., Levand, A.F., Li, G., Pérez Galván, A., Sharma, K.S., Van Schelt, J., Yee, R.M., Zabransky, B.J.: Limit on tensor currents from 8Liβ decay. Phys. Rev. Lett. 115, 182501 (2015)

    Article  ADS  Google Scholar 

  7. Hardy, J.C., Towner, I.S.: Ckm unitarity normalization tests, present and future. Ann. Phys. 525(7), 443–451 (2013)

    Article  Google Scholar 

  8. Kobayashi, M., Maskawa, T.: Cp-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49(2), 652–657 (1973)

    Article  ADS  Google Scholar 

  9. Hardy, J.C., Towner, I.S.: The current evaluation of vud (2015)

  10. Wietfeldt, F.E., Greene, G.L.: Colloquium: the neutron lifetime. Rev. Mod. Phys. 83, 1173–1192 (2011)

    Article  ADS  Google Scholar 

  11. Severijns, N., Tandecki, M., Phalet, T., Towner, I.S.: \(\mathcal {F}t\) values of the t = 1/2 mirror β transitions. Phys. Rev. C 78, 055501 (2008)

    Article  ADS  Google Scholar 

  12. Hardy, J.C., Towner, I.S.: Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for Vud and ckm unitarity. Phys. Rev. C 91, 025501 (2015)

    Article  ADS  Google Scholar 

  13. Valverde, A.A., Brodeur, M., Burdette, D.P., Clark, J.A., Klimes, J.W., Lascar, D., O’Malley, P.D., Ringle, R., Savard, G., Varentsov, V.: Stopped, bunched beams for the TwinSol facility. Hyperfine Interact 240(38). https://doi.org/10.1007/s10751-019-1591-x (2019)

  14. Severijns, N., Naviliat-Cuncic, O.: Structure and symmetries of the weak interaction in nuclear beta decay. Phys. Scr. T152, 014018 (2013)

    Article  ADS  Google Scholar 

  15. Dahl, D.A: Simion for the personal computer in reflection. Int. J. Mass Spectrom. 200(1), 3–25 (2000)

    Article  MathSciNet  Google Scholar 

  16. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J.J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D.: Geant4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: accelerators, Spectrometers. Detectors and Associated Equipment 506(3), 250–303 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted with the support of the University of Notre Dame and the National Science Foundation under Grants No. PHY-1725711 and PHY-1713857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Burdette.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdette, D., Brodeur, M., O’Malley, P. et al. Development of the St. Benedict Paul Trap at the Nuclear Science Laboratory. Hyperfine Interact 240, 70 (2019). https://doi.org/10.1007/s10751-019-1606-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1606-7

Keywords

Navigation