Skip to main content
Log in

Direct decay-energy measurement as a route to the neutrino mass

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A high-precision measurement of the 131Cs→131Xe ground-to-ground-state electron-capture QEC-value was performed using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The novel PI-ICR technique allowed to reach a relative mass precision δm/m of 1.4 ⋅ 10− 9. A mass resolving power mm exceeding 1 ⋅ 107 was obtained in only 1s trapping time. Allowed electron-capture transitions with sub-keV or lower decay energies are of high interest for the direct determination of the νe mass. The new measurement improves the uncertainty on the ground-to-ground-state QEC-value by a factor 25 precluding the 131Cs→131Xe pair as a feasible candidate for the direct determination of the νe mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellini, G., Ludhova, L., Ranucci, G., Villante, F.L. : Neutrino Oscillations. Adv. High Energy Phys. 2014, 1–28 (2014)

    Google Scholar 

  2. Giunti, C., Studenikin, A.: Neutrino electromagnetic interactions: A window to new physics. Rev. Modern Phys. 87(2), 531–591 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ranitzsch, O., Porst, J.-P., Kempf, S., Pies, C., Schäfer, S., Hengstler, D., Fleischmann, A.: Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric 187 Re and 163 Ho Spectra. J. Low Temp. Phys. 167, 1004–1014 (2012)

    Article  ADS  Google Scholar 

  4. Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, Ch.E., Enss, C., Filianin, P.E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Yu.N., Rischka, A., Schüssler, R.X., Schweikhard, L., Türler, A.: Direct measurement of the mass difference of 163 Ho and 163 Dy solves the q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015)

    Article  ADS  Google Scholar 

  5. Khazov, Y.U., Mitropolsky, I., Rodionov, A.: Nuclear data sheets for a = 131. Nuclear Data Sheets 107(11), 2715–2930 (2006)

    Article  ADS  Google Scholar 

  6. Lunney, D.: (on behalf of the ISOLTRAP Collaboration). Extending and refining the nuclear mass surface with ISOLTRAP. J. Phys. G: Nuclear Particle Phys. 44(6), 064008 (2017)

    Article  ADS  Google Scholar 

  7. Kreim, S., Atanasov, D., Beck, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Cocolios, T.E., Fink, D., George, S., Herlert, A., Kellerbauer, A., Köster, U., Kowalska, M., Lunney, D., Manea, V., Minaya Ramirez, E., Naimi, S., Neidherr, D., Nicol, T., Rossel, R.E., Rosenbusch, M., Schweikhard, L., Stanja, J., Wienholtz, F., Wolf, R.N., Zuber, K.: Recent exploits of the ISOLTRAP mass spectrometer. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 317, 492–500 (2013)

    Article  ADS  Google Scholar 

  8. Mukherjee, M., Beck, D., Blaum, K., Bollen, G., Dilling, J., George, S., Herfurth, F., Herlert, A., Kellerbauer, A., Kluge, H.J., Schwarz, S., Schweikhard, L., Yazidjian, C.: ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides. Europ. Phys. J. A 35(1), 1–29 (2008)

    Article  ADS  Google Scholar 

  9. Borge, M.J.G., Blaum, K.: Focus on Exotic Beams at ISOLDE: A Laboratory Portrait. J. Phys. G: Nuclear Particle Phys. 45(1), 010301 (2018)

    Article  ADS  Google Scholar 

  10. Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.-J., Lamour, E., Lunney, D., Moore, R.B., Scheidenberger, C., Schwarz, S., Sikler, G., Szerypo, J.: A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nuclear Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors Assoc. Equip. 469(2), 254–275 (2001)

    Article  ADS  Google Scholar 

  11. Wolf, R.N., Wienholtz, F., Atanasov, D., Beck, D., Blaum, K., Borgmann, Ch., Herfurth, F., Kowalska, M., Kreim, S., Litvinov, Yu. A., Lunney, D., Manea, V., Neidherr, D., Rosenbusch, M., Schweikhard, L., Stanja, J., Zuber, K.: ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 349–350, 123–133 (2013)

    Article  Google Scholar 

  12. Mougeot, M., Atanasov, D., Blaum, K., Chrysalidis, K., Day Goodacre, T., Fedorov, D., Fedosseev, V., George, S., Herfurth, F., Holt, J.D., Lunney, D., Manea, V., Marsh, B., Neidherr, D., Rosenbusch, M., Rothe, S., Schweikhard, L., Schwenk, A., Seiffert, C., Simonis, J., Stroberg, S.R., Welker, A., Wienholtz, F., Wolf, R.N., Zuber, K.: Precision Mass Measurements of 58-63 Cr: Nuclear Collectivity Towards the N = 40 Island of Inversion. Phys. Rev. Lett. 120, 232501 (2018)

    Article  ADS  Google Scholar 

  13. Wienholtz, F., Beck, D., Blaum, K., Borgmann, Ch., Breitenfeldt, M., Cakirli, R.B., George, S., Herfurth, F., Holt, J.D., Kowalska, M., Kreim, S., Lunney, D., Manea, V., Menéndez, J., Neidherr, D., Rosenbusch, M., Schweikhard, L., Schwenk, A., Simonis, J., Stanja, J., Wolf, R.N., Zuber, K.: Masses of exotic calcium isotopes pin down nuclear forces. Nature 498(7454), 346–349 (2013)

    Article  ADS  Google Scholar 

  14. Wienholtz, F., Kreim, S., Rosenbusch, M., Schweikhard, L., Wolf, R.N.: Mass-selective ion ejection from multi-reflection time-of-flight devices via a pulsed in-trap lift. Int. J. Mass Spectrom. 421, 285–293 (2017)

    Article  Google Scholar 

  15. Savard, G., Becker, St., Bollen, G., Kluge, H.-J., Moore, R.B., Otto, Th., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158(5), 247–252 (1991)

    Article  ADS  Google Scholar 

  16. König, M., Bollen, G., Kluge, H.-J., Otto, T., Szerypo, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Process. 142(1-2), 95–116 (1995)

    Article  ADS  Google Scholar 

  17. George, S., Baruah, S., Blank, B., Blaum, K., Breitenfeldt, M., Hager, U., Herfurth, F., Herlert, A., Kellerbauer, A., Kluge, H.-J., Kretzschmar, M., Lunney, D., Savreux, R., Schwarz, S., Schweikhard, L., Yazidjian, C.: Ramsey Method of Separated Oscillatory Fields for High-Precision Penning Trap Mass Spectrometry. Phys. Rev. Lett. 98(16), 162501 (2007)

    Article  ADS  Google Scholar 

  18. Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu. N., Schweikhard, L.: Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides. Phys. Rev. Lett. 110 (8), 082501 (2013)

    Article  ADS  Google Scholar 

  19. Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu. N., Schweikhard, L.: A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114(1-2), 107–128 (2014)

    Article  ADS  Google Scholar 

  20. Karthein, J.: Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique - Master thesis - Ruprecht-Karls-Universität Heidelberg (2017)

  21. Antcheva, I., Ballintijn, M., Bellenot, B., Biskup, M., Brun, R., Buncic, N., Canal, Ph., Casadei, D., Couet, O., Fine, V., Franco, L., Ganis, G., Gheata, A., Gonzalez Maline, D., Goto, M., Iwaszkiewicz, J., Kreshuk, A., Marcos Segura, D., Maunder, R., Moneta, L., Naumann, A., Offermann, E., Onuchin, V., Panacek, S., Rademakers, F., Russo, P., Tadel, M.: ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 180(12), 2499–2512 (2009)

    Article  ADS  Google Scholar 

  22. Fink, D., Barea, J., Beck, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Herfurth, F., Herlert, A., Kotila, J., Kowalska, M., Kreim, S., Lunney, D., Naimi, S., Rosenbusch, M., Schwarz, S., Schweikhard, L., Šimkovic, F., Stanja, J., Zuber, K.: Q Value and Half-Lives for the Double- β -Decay Nuclide Pd 110. Phys. Rev. Lett. 108(6), 062502 (2012)

    Article  ADS  Google Scholar 

  23. Wang, M., Audi, G., Kondev, F.G., Huang, W.J., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41(3), 030003 (2017)

    Article  ADS  Google Scholar 

  24. Sturm, S., Köhler, F., Zatorski, J., Wagner, A., Harman, Z., Werth, G., Quint, W., Keitel, C.H., Blaum, K.: High-precision measurement of the atomic mass of the electron. Nature 506(7489), 467–470 (2014)

    Article  ADS  Google Scholar 

  25. Kellerbauer, A., Blaum, K., Bollen, G., Herfurth, F., Kluge, H.-J., Kuckein, M., Sauvan, E., Scheidenberger, C., Schweikhard, L.: From direct to absolute mass measurements: A study of the accuracy of ISOLTRAP. Europ. Phys. J. D - Atom., Mol. Opt. Phys. 22(1), 53–64 (2003)

    ADS  Google Scholar 

  26. Welker, A., Filianin, P., Althubiti, N.A.S., Atanasov, D., Blaum, K., Cocolios, T.E., Eliseev, S., Herfurth, F., Kreim, S., Lunney, D., Manea, V., Neidherr, D., Novikov, Yu., Rosenbusch, M., Schweikhard, L., Wienholtz, F., Wolf, R.N., Zuber, K.: Precision electron-capture energy in 202 Pb and its relevance for neutrino mass determination. Eur. Phys. J. A 53, 153 (2017)

    Article  ADS  Google Scholar 

  27. Cardona, M., Ley, L. (eds.): Photoemission in Solids I, volume 26 of Topics in Applied Physics. Springer, Berlin (1978)

    Google Scholar 

  28. NIST X-ray Photoelectron Spectroscopy (XPS) Database, Version 3.5.

  29. Nesterenko, D.A., Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dörr, A., Droese, C., Filianin, P.E., Goncharov, M., Minaya Ramirez, E., Novikov, Yu. N., Schweikhard, L., Simon, V.V.: Direct determination of the atomic mass difference of Re 187 and Os 187 for neutrino physics and cosmochronology. Phys. Rev. C 90(4), 042501 (2014)

    Article  ADS  Google Scholar 

  30. Eliseev, S., Althubiti, N., Ascher, P., Atanasov, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Cakirli, RB., Cocolios, T.E., Eronen, T., Filianin, P., George, S., Goncharov, M., Herfurth, F., Herlert, A., Kisler, D., Kowalska, M., Kreim, S., Litvinov, Yu.A., Lunney, D., Manea, V., Minaya Ramirez, E., Naimi, S., Neidherr, D., Novikov, Yu., Rosenbusch, M., De Roubin, A., Schweikhard, L., Wienholtz, F., Welker, A., Wolf, R.N., Zuber, K.: Proposal to the ISOLDE and Neutron Time-of-Flight Committee: Search for β-transitions with the lowest decay energy for a determination of the neutrino mass. Technical report, CERN (2014)

  31. Karthein, J., Atanasov, D., Blaum, K., Eliseev, S., George, S., Herfurth, F., Herlert, A., Lunney, D., Manea, V., Mougeot, M., Neidherr, D., Novikov, Y., Rosenbusch, M., Schweikhard, L., Wienholtz, F., Welker, A., Wolf, R., Zuber, K.: Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee. Technical report, CERN (2017)

Download references

Acknowledgements

We thank the ISOLDE technical group and the ISOLDE Collaboration for their professional help. We acknowledge support by the Max Planck Society, the German Federal Ministry of Education and Research (BMBF) (05P12HGCI1, 05P12HGFNE, and 05P15ODCIA), the French IN2P3, the ExtreMe Matter Institute (EMMI) at GSI, and the European Union’s Horizon 2020 research and innovation programme (654002). Jonas Karthein acknowledges the support by a Wolfgang Gentner Ph.D scholarship of the BMBF (05E12CHA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karthein.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

This article contains data from the Ph.D thesis work of Jonas Karthein, enrolled at Heidelberg University, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthein, J., Atanasov, D., Blaum, K. et al. Direct decay-energy measurement as a route to the neutrino mass. Hyperfine Interact 240, 61 (2019). https://doi.org/10.1007/s10751-019-1601-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1601-z

Keywords

Navigation