Skip to main content
Log in

Status of ELI-NP and opportunities for hyperfine research

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The status of the implementation of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility is reported. The main instruments at ELI-NP will be two 10 PW synchronizable lasers and a high-brilliance gamma beam system. The ELI-NP gamma beams will be produced via Compton back-scattering of laser photons off accelerated electrons. The emerging day-one experimental program is discussed, together with the detector systems which are under construction for its realization. At ELI-NP an IGISOL facility is planned, where beams of exotic nuclei will be produced in photo-fission. This opens the avenue for studies of nuclear structure studies, such as mass measurements, nuclear moments and charge radii. The core of this project is a Cryogenic Stopping Cell (CSC) with an orthogonal extraction with respect to the gamma beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamfir, N.V.: Extreme light infrastructure - nuclear physics (ELI-NP). Nucl. Phys. News 25(3), 34 (2015)

    Article  Google Scholar 

  2. NUPECC Long Range Plan 2017: Perspectives in nuclear physics, European Science Foundation (2017)

  3. Gales, S., et al.: New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams. Phys. Scr. 91, 093004 (2016)

    Article  ADS  Google Scholar 

  4. Balabanski, D.L., et al.: New light in nuclear physics: the extreme light infrastructure. Europhys. Lett. 117, 28001 (2017)

    Article  ADS  Google Scholar 

  5. Gales, S., et al.: The extreme light infrastructure - nuclear physics (ELI-NP) facility: new horizons in physics with ultra-intense 10 PW lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys. 81, 094301 (2018)

    Article  ADS  Google Scholar 

  6. Ur, C.A., et al.: Nuclear resonance fluorescence experiments at ELI-NP. Rom. Rep. Phys. 68, S483 (2016)

    Google Scholar 

  7. Belic, D., et al.: Photoactivation of 180Tam and its implications for the nucleosynthesis of the Nature rarest naturally occurring isotope. Phys. Rev. Lett. 83, 5242 (1999)

    Article  ADS  Google Scholar 

  8. Belic, D., et al.: Photo-induced depopulation of the 180Tam isomer via low-lying intermediate states: Structure and astrophysics implications. Phys. Rev. C 65, 035801 (2002)

    Article  ADS  Google Scholar 

  9. Camera, F., et al.: Gamma above the neutron threshold experiments at ELI-NP. Rom. Rep. Phys. 68, S539 (2016)

    Google Scholar 

  10. Utsunomiya, H., et al.: Photodisintegration of 9Be with laser-induced Compton backscattering γ rays. Phys. Rev. C 63, 018801 (2000)

    Article  ADS  Google Scholar 

  11. Arnold, C.W., et al.: Cross-section measurement of 9Be(γ,n)8Be and implications for the α + α + n9Be in the r process. Phys. Rev. C 85, 044605 (2012)

    Article  ADS  Google Scholar 

  12. Utsunomiya, H., et al.: Photodisintegration of 9Be through the 1/2+ state and cluster dipole resonance. Phys. Rev. C 92, 064323 (2015)

    Article  ADS  Google Scholar 

  13. Krzysiek, M., et al.: Simulation of the ELIGANT-GN array performances at ELI-NP for gamma beam energies larger than neutron threshold. Nucl. Instr. Meth. Phys. Res. A 916, 257 (2019)

    Article  ADS  Google Scholar 

  14. Tesileanu, O., et al.: Charged-particle detection at ELI-NP. Rom. Rep. Phys. 68, S699 (2016)

    Google Scholar 

  15. Fields, B.D.: The primordial litium problem. Ann. Rev. Nucl. and Part. Sci. 61, 47 (2011)

    Article  ADS  Google Scholar 

  16. deBoer, R.J., et al.: The 12C(α,γ)16O reaction and its implications for stellar helium burning. Rev. Mod. Phys. 89, 035007 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Matei, C., Balabanski, D., Filipescu, D., Tesileanu, O.: Photodisintegration reactions for nuclear astrophysics studies at ELI-NP. J. Phys. Conf. Series 940, 012025 (2018)

    Article  Google Scholar 

  18. Cwiok, M., et al.: A TPC detector for studying photonuclear reactions at astrophysical energies with gamma-beams at ELI-NP. Acta Phys. Pol. B 49, 509 (2018)

    Article  ADS  Google Scholar 

  19. Gai, M., et al.: Time-projection chamber (TPC) detectors for nuclear astrophysics studies with gamma beams. Nucl. Instr. Meth. Phys. Res. A in print. https://doi.org/10.1016/j.nima.2019.01.006 (2019)

  20. Sauli, F.: GEM: A new concept for gas electron amplification in gas detectors. Nucl. Instr. Meth. Phys. Res. A 386, 531 (1997)

    Article  ADS  Google Scholar 

  21. Sauli, F.: The gas electron multiplier (GEM): Operating principles and applications. Nucl. Instr. Meth. Phys. Res. A 805, 2 (2016)

    Article  ADS  Google Scholar 

  22. Pollacco, E., et al.: GET: A generic electronics system for TPCs and nuclear physics instrumentation. Nucl. Instr. Meth. Phys. Res. A 887, 81 (2018)

    Article  ADS  Google Scholar 

  23. Balabanski, D.L., et al.: Photofission experiments at ELI-NP. Rom. Rep. Phys. 68, S621 (2016)

    Google Scholar 

  24. Krasznahorkay, A.: Tunneling through triple-humped fission barriers. In: Vertes, A, et al. (eds.) Handbook of Nuclear Chemistry, vol. 1, pp 281–318. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  25. Chaudhury, D., et al.: Prospectives of photofission studies with high-brilliance narrow-width gamma beams at the ELI-NP facility. Acta Phys. Pol. B 48, 559 (2017)

    Article  ADS  Google Scholar 

  26. Shalem, C.K., et al.: Advances in thick GEM-like gaseous electron multipliers Part II: Low-pressure operation. Nucl. Instr. Meth. Phys. Res. A 558, 468 (2006)

    Article  ADS  Google Scholar 

  27. Dickel, T., et al.: Conceptional design of a novel next-generation cryogenic stopping cell for the low-energy branch of the super-FRS. Nucl. Inst. Methods B 376, 216 (2016)

    Article  ADS  Google Scholar 

  28. Constantin, P., et al.: Design of the gas cell for the IGISOL facility at ELI-NP. Nucl. Inst. Methods B 397, 1 (2017)

    Article  ADS  Google Scholar 

  29. Balabanski, D.L., et al.: The IGISOL Facility at ELI-NP, to appear in JPS Conf. Proc.

  30. Bollen, G.: Ion surfing with radiofrequency carpets. Int. J. Mass Spect. 299, 131 (2011)

    Article  Google Scholar 

  31. Manura, D., Dahl, D.: SIMION 8.0 User Manual. Sci. Instrum. Serv. Inc. (2008)

Download references

Acknowledgements

This work was supported by Extreme Light Infrastructure Nuclear Physics (ELI-NP) Phase II, a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund – the Competitiveness Operational Programme (1/07.07.2016, COP, ID 1334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter L. Balabanski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanski, D.L., Constantin, P., Rotaru, A. et al. Status of ELI-NP and opportunities for hyperfine research. Hyperfine Interact 240, 49 (2019). https://doi.org/10.1007/s10751-019-1594-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1594-7

Keywords

Navigation