Skip to main content
Log in

X-ray diffraction and Mössbauer spectroscopy of Gandom Beryan 008 ordinary chondrite

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The results of the study of newly found Gandom Beryan 008 H5 ordinary chondrite by means of X-ray diffraction and Mössbauer spectroscopy with additional characterization by optical and scanning electron microscopy are considered. The main iron-bearing phases and their hyperfine parameters were determined. A comparison of Fe2+ occupancies of the M1 and M2 sites in olivine and orthopyroxene determined by X-ray diffraction and Mössbauer spectroscopy data demonstrates some consistency and partial oxidation of Fe2+ in olivine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarosewich, E.: Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteoritics. 25, 323–337 (1990)

    Article  ADS  Google Scholar 

  2. Rubin, A.E.: Mineralogy of meteorite groups. Meteorit. Planet. Sci. 32, 231–247 (1997)

    Article  ADS  Google Scholar 

  3. Hontsova, S.S., Petrova, E.V., Chukin, A.V., Maksimova, A.A., Maksimova, E.M., Oshtrakh, M.I.: The first characterization of a newly found Iranian meteorite Gandom Beryan 008. Meteor. Planet. Sci. 53(SI, Suppl. 1), 6111 (2018) (Abstract)

  4. Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G.: Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research. J. Radioanal. Nucl. Chem. 281, 63–67 (2009)

    Article  Google Scholar 

  5. Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G.: A high velocity resolution Mössbauer spectrometric system for biomedical research. Bull. Rus. Acad. Sci.: Phys. 74, 416–420 (2010)

    Google Scholar 

  6. Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 100, 78–87 (2013)

    Article  ADS  Google Scholar 

  7. Oshtrakh, M.I., Semionkin V.A.: Mössbauer spectroscopy with a bigh velocity resolution: principles and applications. In: J. Tuček, M. Miglierini (eds.) Proceedings of the International Conference mössbauer Spectroscopy in Materials Science 2016, AIP Conference Proceedings. AIP Publishing, Melville, New York, 1781, 020019 (2016)

  8. Maksimova, A.A., Oshtrakh, M.I., Chukin, A.V., Felner, I., Yakovlev, G.A., Semionkin, V.A.: Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 192, 275–284 (2018)

    Article  ADS  Google Scholar 

  9. Munayco, P., Munayco, J., Valenzuela, M., Rochette, P., Gattacceca, J., Scorzelli, R.B.: 57Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: implications for weathering processes. Hyperfine Interact. 224, 257–262 (2014)

    Article  ADS  Google Scholar 

  10. Zboril, R., Mashlan, M., Petridis, D.: Iron(III) oxides from thermal processes – synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969–982 (2002)

    Article  Google Scholar 

  11. Murad, E.: Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)

    Article  ADS  Google Scholar 

  12. Osborne, M.D., Fleet, M.E., Bancroft, G.M.: Fe2+–Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol. 77, 251–255 (1981)

    Article  ADS  Google Scholar 

  13. Lenaz, D., Skogby, H.: Structural changes in the FeAl2O4–FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Phys. Chem. Minerals. 40, 587–595 (2013)

    Article  ADS  Google Scholar 

  14. Murad, E., Johnston, J.H.: Iron oxides and Oxyhydroxides. In: Long, G.J. (ed.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, pp. 507–582. Plenum Press, New York (1987)

    Google Scholar 

  15. Yakovlev, G.A., Chukin, A.V., Grokhovsky, V.I., Semionkin, V.A., Oshtrakh, M.I.: Study of Dronino iron meteorite weathering in clay sand using Mössbauer spectroscopy. Croat. Chem. Acta. 89, 117–124 (2016)

    Article  Google Scholar 

  16. Schmidbauer, E.: 57Fe Mössbauer spectroscopy and magnetization of cation-deficient Fe2TiO4 and FeCr2O4. Part I: 57Fe Mössbauer spectroscopy. Phys. Chem. Miner. 14, 533–641 (1987)

    Article  ADS  Google Scholar 

  17. Quintiliani, M., Andreozzi, G.B., Skogby, H.: Synthesis and Mössbauer characterization of Fe1+xCr2-xO4 (0 ≤ x ≤ 2/3) spinel single crystals. Period. Mineral. 80(Special Issue), 39–55 (2011)

    Google Scholar 

  18. Maksimova, A.A., Chukin, A.V., Oshtrakh, M.I.: Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In: J. Tuček, M. Miglierini (eds.) Proceedings of the International Conference mössbauer Spectroscopy in Materials Science 2016, AIP Conference Proceedings. AIP Publishing, Melville, New York, 1781, 020016 (2016)

  19. Malysheva, T.V.: Mössbauer Effect in Geochemistry and Cosmochemistry, p. 166. Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  20. Wang, L., Moon, N., Zhang, Y., Dunham, W.R., Essene, E.J.: Fe-Mg order-disorder in orthopyroxenes. Geochim. Cosmochim. Acta. 69, 5777–5788 (2005)

    Article  ADS  Google Scholar 

  21. Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Meteorit. Planet. Sci. 43, 941–958 (2008)

    Article  ADS  Google Scholar 

  22. Shinno, I.: A Mössbauer study of ferric iron in olivine. Phys. Chem. Miner. 7, 91–95 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S.S. Hontsova for her help with optical microscopy and G.A. Yakovlev for his help with scanning electron microscopy with energy dispersive spectroscopy measurements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (the Project № 3.1959.2017/4.6) and Act 211 Government of the Russian Federation, contract № 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Oshtrakh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.V., Maksimova, A.A., Chukin, A.V. et al. X-ray diffraction and Mössbauer spectroscopy of Gandom Beryan 008 ordinary chondrite. Hyperfine Interact 240, 42 (2019). https://doi.org/10.1007/s10751-019-1592-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1592-9

Keywords

Navigation