Skip to main content
Log in

Helium tune-out wavelength: Gauge invariance and retardation corrections

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The problem of calculating the tune-out wavelength for an atom interacting with a plane electromagnetic wave is formulated as a zero in the Rayleigh scattering cross section, rather than a zero in the dynamic polarizability. Retardation (finite wavelength) corrections are discussed in the velocity gauge, and possible gauge transformations to a length form are investigated. For the special case of S-states, it is shown that a pure length form exists for the leading pxz retardation correction, even though one does not exist in general. The results of high-precision calculations in Hylleraas coordinates are presented for the tune-out wavelength of helium near the 23S − 33P transition at 413 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henson, B.M., Khakimov, R.I., Dall, R.G., Baldwin, K.G.H., Tang, L.Y., Truscott, A.G.: Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes. Phys. Rev. Lett. 115, 043004 (2015)

    Article  ADS  Google Scholar 

  2. Šindelka, M., Moiseyev, N., Cederbaum, L.S.: Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach. Phys. Rev. A 74, 053420 (2006)

    Article  ADS  Google Scholar 

  3. Jentschura, U.D., Adhikari, C.M.: Relativistic and radiative corrections to the dynamic Stark shift: Gauge invariance and transition currents in the velocity gauge. Phys. Rev. A 97, 062120 (2018)

    Article  ADS  Google Scholar 

  4. Zhang, Y.-H., Tang, L.-Y., Zhang, X.-Z., Shi, T.-Y.: Tune-out wavelength around 413 nm for the helium 23S 1 state including relativistic and finite-nuclear-mass corrections. Phys. Rev. A 93, 052516 (2016)

    Article  ADS  Google Scholar 

  5. Manalo, J: M.Sc. Thesis, University of Windsor, Canada. https://scholar.uwindsor.ca/etd/7275/ (2017)

  6. Akhiezer, A.I., Berestetskii, V.B.: Quantum Electrodynamics, translated by G.M. Volkoff, pp 484–491. Interscience, New York (1965)

    Google Scholar 

  7. Goldman, S.P., Drake, G.W.F.: Relativistic two-photon decay rates of 2s 1/2 hy drogenic ions. Phys. Rev. A 24, 183 (1981)

    Article  ADS  Google Scholar 

  8. Drake, G.W.F., Goldman, S.P.: Relativistic Sturmian and finite basis set methods in atomic physics. Adv. At. Mol. Phys. 25, 393–416 (1988)

    Article  ADS  Google Scholar 

  9. Szmytkowski, R.: Dynamic polarizability of the relativistic hydrogenlike atom: Application of the Sturmian expansion of the Dirac-Coulomb Green function. Phys. Rev. A 65, 012503 (2001). and earlier references therein

    Article  ADS  Google Scholar 

  10. Pachucki, K.: Analytical evaluation of higher-order binding corrections to the Lamb shift. Phys. Rev. A 46, 648 (1992)

    Article  ADS  Google Scholar 

  11. Although a pure length form does not exist, Selstø and Førre [12] have obtained a hybrid length/velocity form by means of a unitary transformation. It can be obtained from the results presented here by calculating the commutator [H 0, xe ikziωt] and subtracting out the spurious terms generated by the commutator to obtain the correct velocity form p xe ikziωt.

  12. Selstø, S., Førre, M.: Alternative descriptions of the light-matter interaction beyond the dipole approximation. Phys. Rev. A 76, 023427 (2007). See also Refs. [13–14]

    Article  ADS  Google Scholar 

  13. Bandrauk, A.D., Fillion-Gourdeau, F., Lorin, E.: Atoms and molecules in intense laser fields: gauge invariance of theory and models. J. Phys. B 46, 153001 (2013). Sect. 4.3

    Article  ADS  Google Scholar 

  14. Anzaki, R., Shinohara, Y., Sato, T., Ishikawa1, K. L.: Gauge invariance beyond the electric dipole approximation. Phys. Rev. A 98, 063410 (2018)

  15. Ref. [6], Sect. 27.2

  16. Hylleraas, E.A.: Über den Grundzustand des Heliumatoms. Z. Phys. 48, 469 (1928). Neue berechnung der energie des heliums im grundzustande, sowie des tiefsten terms von ortho-helium: 54, 347 (1929)

    ADS  MATH  Google Scholar 

  17. Drake, G.W.F., Yan, Z.-C.: Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. Phys. Rev. A 46, 2378 (1992)

    Article  ADS  Google Scholar 

  18. Zhang, Y.-H., Wu, F.-F., Zhang, P.-P., Tang, L.-Y., Zhang, J.-Y., Baldwin, K.G.H., Shi, T.-Y.: Private communication (2018)

  19. Pachucki, K.: Theory of forbidden transitions in light atoms. Phys. Rev. A 67, 012504 (2003). Long-wavelength quantum electrodynamics: 69, 052502 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Li-Yan Tang for helpful correspondence concerning her calculations. Research support by the Natural Sciences and Engineering Research Council, by SHARCnet, and by the Australian Research Council Discovery Project DP180101093 are gratefully acknowledged. P.-P. Zhang acknowledges support by the National Natural Science Foundation of China under Grant No. 11604369, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grants No. XDB21010400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. F. Drake.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drake, G.W.F., Manalo, J.G., Zhang, PP. et al. Helium tune-out wavelength: Gauge invariance and retardation corrections. Hyperfine Interact 240, 31 (2019). https://doi.org/10.1007/s10751-019-1574-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1574-y

Keywords

Navigation