Skip to main content
Log in

Robust solid-state qubits based on nuclear quadrupole resonance technique

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Advances in quantum information processing can open a way for their numerous applications in various fields of science and technology: communication, precision measurement, computing, nano-scale detectors, and sensors. Solid state with nucleus spins-1/2 is one of the natural bases for creation of a system of the interacting qubits. It was theoretically predicted and experimentally confirmed that logical gates can be realized using quantum states of a single nucleus with a spin I > 1/2. In the present paper we consider representation of a quadrupole spin-3/2 and 7/2 as well as a diatomic molecule as systems of interacting fictitious spins-1/2. It is shown that the Hamiltonians of these systems contain terms describing multi-body interactions and constants of these interactions depend on the applied magnetic field. Considering the fictitious spins as qubits influence of the unique properties of the systems on concurrence is analyzed. The representation of the molecule as a fictitious spin-1/2 system allows us to consider the bipartite concurrences between qubits formatted by the molecule states. The dependence of the concurrences on the magnetic field and its frequency can be used at development of methods to control qubit states and to realize computing protocols. Representation of spins I > 1/2 and their systems as systems of interacting fictitious spins-1/2 can be used at the investigation of properties of complex systems and realization of quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  2. Feynman, R.: Simulating physics with computers. Int. J. Theoretical Phys. 21, 467 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 94, 634–1639 (1997)

    Article  ADS  Google Scholar 

  4. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  Google Scholar 

  5. Jones, J.A.: NMR quantum computation. Prog. Nucl. Magn. Reson. Spectrosc. 38, 325–360 (2001)

    Article  Google Scholar 

  6. Lee, J.-S., Khitrin, A.K.: Pseudopure state of a twelve-spin system. J. Chem. Phys. 122, 041101 (2005)

    Article  ADS  Google Scholar 

  7. Lee, J.-S., Khitrin, A.K.: Twelve-spin Schrodinger cat. Appl. Phys. Lett. 87, 204109 (2005)

    Article  ADS  Google Scholar 

  8. Negrevergne, C., Mahesh, T.S., Ryan, C.A., et al.: Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501 (2006)

    Article  ADS  Google Scholar 

  9. Kessel, A.R., Ermakov, V.L.: Multiqubit spin. JETP Lett. 70, 61–65 (1999)

    Article  ADS  Google Scholar 

  10. Kessel, A.R., Ermakov, V.L.: Physical implementation of three-qubit gates on a separate quantum particle. JETP Lett. 71, 307–309 (2000)

    Article  ADS  Google Scholar 

  11. Furman, G.B., Goren, S.D.: Pure NQR Quantum Computing, . Z. Naturforsch. 57a, 315–319 (2002)

    Article  ADS  Google Scholar 

  12. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Two qubits in pure nuclear quadrupole resonance. J. Phys. : Condens. Matter 14, 8715–8723 (2002)

    ADS  Google Scholar 

  13. Khitrin, A.K., Fung, B.M.: NMR quantum logic gates using quadrupolar nuclei. J. Chem. Phys. 112, 6963 (2000)

    Article  ADS  Google Scholar 

  14. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Single spin entanglement. Quantum. Inf. Process 16, 206 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Fictitious spin-1/2 operators and correlations in quadrupole nuclear spin system. Int. J. Quantum Inform. 16, 1850008 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L., Kozyrev, A.B.: Quantum and classical correlations in three qubit spin. Quantum. Inf. Process. 18, 66 (2019). https://doi.org/10.1007/s11128-019-2189-6

    Article  ADS  MathSciNet  Google Scholar 

  17. Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th annual symposium on the foundations of computer science, pp. 124–134. IEEE Computer Society, Los Alamitos (1994)

  18. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proc. IEEE int. conference on computers, systems and signal processing IEEE, New York, pp. 175–179 (1984)

  20. Das, T.P., Hahn, E.L.: Nuclear quadrupole resonance spectroscopy. Academic Press, New York and London (1958)

    Google Scholar 

  21. Smith, J.A.S.: Nuclear quadrupole resonance spectroscopy. J. Chem. Education 48, 39–49 (1971)

    Article  ADS  Google Scholar 

  22. Abragam, A.: The principles of nuclear magnetism. Oxford Clarendon Press, Oxford (1961)

    Google Scholar 

  23. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  24. Yurishchev, M.A.: Entanglement entropy fluctuations in quantum Ising chains. JETP 111, 525 (2010)

    Article  ADS  Google Scholar 

  25. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf. Process. 10, 307–315 (2011)

    Article  MathSciNet  Google Scholar 

  26. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Adiabatic demagnetization and generation of entanglement in spin systems. Phys. Lett. A376, 925–929 (2012)

    Article  ADS  Google Scholar 

  27. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 11, 1603–1617 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Fading entanglement near an equilibrium state. Phys. Rev. A 86, 032336 (2012)

    Article  ADS  Google Scholar 

  29. Goldman, M.: Spin temperature and nuclear resonance in solids. Oxford Clarendon Press, Oxford (1970)

    Google Scholar 

  30. Awodey, S.: Isomorphisms. Category theory. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  31. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 885 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Teles, J., Rivera-Ascona, C., Polli, R.S., Oliveira-Silva, R., Vidoto, E.L.G., Andreeta, J.P., Bonagamba, T.J.: Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance. Quantum. Inf. Process. 14, 1889–1906 (2015)

    Article  ADS  Google Scholar 

  34. Khitrin, A.K., Fung, B.M.: NMR simulation of an eight-state quantum system. Phys. Rev. A 64, 032306 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant from Ohalo College Science Committee. ABK thanks the Ministry of Education and Science of the Russian Federation for support within the framework of Research and development in priority areas of advancement of the Russian scientific and technological complex for 2014-2020, agreement No. 14.608.21.0002 of 27.10.2015 (unique number of agreement RFMEFI60815X0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Furman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furman, G.B., Meerovich, V.M., Sokolovsky, V.L. et al. Robust solid-state qubits based on nuclear quadrupole resonance technique. Hyperfine Interact 240, 24 (2019). https://doi.org/10.1007/s10751-019-1567-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1567-x

Keywords

Navigation