Skip to main content
Log in

Beyond antihydrogen: testing CPT with the molecular antihydrogen ion

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Measurements of Zeeman, Zeeman-hyperfine and ro-vibrational transitions in \(\bar {H}_{2}^{-}(\bar {p}e^{+}\bar {p})\) compared to \(H_{2}^{+}\) have the potential for more precise tests of CPT than can be obtained from antiprotons and antihydrogen. In particular, measurements of ro-vibrational transitions have a potential sensitivity to a difference between antiproton and proton mass three orders of magnitude higher than antihydrogen/hydrogen. Methods are outlined for precision measurements on a single \(\bar {H}_{2}^{-}\) or \({H}_{2}^{+}\) ion in a cryogenic Penning trap, with non-destructive state identification using the continuous Stern-Gerlach effect or changes in mass. \(\bar {H}_{2}^{-}\) can be produced using the \(\bar {H}^{+}+\bar {p} \rightarrow \bar {H}_{2}^{-} + e^{+}\) reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lüders, G.: Ann. Phys. 2, 1 (1957)

    Article  ADS  Google Scholar 

  2. Gabrielse, G., et al.: Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  3. Hori, M., et al.: Science 354, 610 (2016)

    Article  ADS  Google Scholar 

  4. DiSciacca, J., et al.: Phys. Rev. Lett. 110, 130801 (2013)

    Article  ADS  Google Scholar 

  5. Smorra, C., et al.: Nature 550, 371 (2017)

    Article  ADS  Google Scholar 

  6. Ahmadi, M., et al.: Nature 557, 71 (2018)

    Article  ADS  Google Scholar 

  7. Ahmadi, M., et al.: Nature 548, 66 (2017)

    Article  ADS  Google Scholar 

  8. Ulmer, S., et al.: Nature 524, 196 (2015)

    Article  ADS  Google Scholar 

  9. Parthey, C.G., et al.: Phys. Rev. Lett. 107, 203001 (2011)

    Article  ADS  Google Scholar 

  10. Diermaier, M., et al.: Nat. Commun. 548, 15749 (2017)

    Article  ADS  Google Scholar 

  11. Hilico, L., Billy, N., Grémaud, B., Delande, D.: Eur. Phys. J. D12, 449 (2000)

    ADS  Google Scholar 

  12. Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  13. Myers, E.G.: Int. J. Mass Spectrom. 349–350, 107 (2013)

    Article  Google Scholar 

  14. Werth, G., Häffner, H., Quint, W.: Adv. At. Mol. Opt. Phys. 48, 191 (2002)

    Article  ADS  Google Scholar 

  15. Sturm, S., et al.: Nature (London) 506, 467 (2014)

    Article  ADS  Google Scholar 

  16. Cornell, E.A., et al.: Phys. Rev. Lett. 63, 1674 (1989)

    Article  ADS  Google Scholar 

  17. Sturm, S., et al.: Phys. Rev. Lett. 107, 143003 (2011)

    Article  ADS  Google Scholar 

  18. Brown, J.M., Carrington, A: Rotational Spectroscopy of Diatomic Molecules. Cambridge (2003)

  19. Korobov, V.I., Hilico, L., Karr, J.-Ph.: Phys. Rev. A 74, 040502(R) (2006)

    Article  ADS  Google Scholar 

  20. Ramsey, N.F.: Molecular Beams. Clarendon Press, Oxford (1956)

    Google Scholar 

  21. Bollinger, J.J., et al.: Phys. Rev. Lett. 54, 1000 (1985)

    Article  ADS  Google Scholar 

  22. Hilico, L., et al.: Phys. B: At. Mol. Opt. Phys. 34, 491 (2001)

    Article  ADS  Google Scholar 

  23. Karr, J.-Ph., et al.: Phys. Rev. A 94, 050501(R) (2016)

    Article  ADS  Google Scholar 

  24. Schiller, S., Bakalov, D., Korobov, V.I.: Phys. Rev. Lett. 113, 023004 (2014)

    Article  ADS  Google Scholar 

  25. Myers, E.G.: Phys. Rev. A 98, 010101(R) (2018)

    Article  ADS  Google Scholar 

  26. Smith, J.A., et al.: Phys. Rev. Lett. 120, 143002 (2018)

    Article  ADS  Google Scholar 

  27. Chou, C.-W., et al.: Nature 545, 203 (2017)

    Article  ADS  Google Scholar 

  28. Leibfried, D.: Appl. Phys. B 123, 10 (2017)

    Article  ADS  Google Scholar 

  29. Janev, R.K., Reiter, D., Samm, U.: Collision processes in low-temperature hydrogen plasmas. Berichte des Forschungszentrums Julich 4105, ISSN: 0944-2952

  30. Zammit, M.C., et al.: Astr. Phys. J. 851, 164 (2017)

    Google Scholar 

  31. Perez, P., et al.: Hyperfine Interact. 233, 21 (2015)

    Article  ADS  Google Scholar 

  32. Urbain, X., et al.: J. Phys. B: At. Mol. Phys. 19, L273 (1986)

    Article  Google Scholar 

  33. Andresen, G.B., et al.: Nature 468, 673 (2010)

    Article  ADS  Google Scholar 

  34. Richerme, P., et al.: Phys. Rev. A 87, 023422 (2013)

    Article  ADS  Google Scholar 

  35. Posen, A., Dalgarno, A., Peek, J.: At. Data Nucl. Data Tables 28, 265 (1983)

    Article  ADS  Google Scholar 

  36. Pilón, H.O., Baye, D.: J. Phys. B: At. Mol. Opt. Phys. 45, 065101 (2012)

    Article  ADS  Google Scholar 

  37. Andrianarijaona, V.M., Jureta, J., Urbain, X: Abstract of ICPEAC (2003)

  38. Karr, J.-P.: personal communication (2018)

Download references

Acknowledgements

The author thanks G. Gabrielse for supporting visits to CERN and members of ATRAP for their hospitality. Support from the US National Science Foundation under PHY-1403725 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund G. Myers.

Additional information

This article is part of the Topical Collection on Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12–16 March 2018

Edited by Paul Indelicato, Dirk van der Werf and Yves Sacquin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, E.G. Beyond antihydrogen: testing CPT with the molecular antihydrogen ion. Hyperfine Interact 239, 43 (2018). https://doi.org/10.1007/s10751-018-1520-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1520-4

Keywords

Navigation