Skip to main content
Log in

Benchmark study of DFT with Eu and Np Mössbauer isomer shifts using second-order Douglas-Kroll-Hess Hamiltonian

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We optimized a mixing ratio of exchange energy between pure DFT and exact Hartree-Fock using TPSS exchange-correlation functional to estimate the accurate coordination bonds in f-block complexes by numerically benchmarking with the experimental data of Mössbauer isomer shifts for 151Eu and 237Np nuclides. Second-order Douglas-Kroll-Hess Hamiltonian with segmented all-electron relativistically contracted basis set was employed to calculate the electron densities at Eu and Np nuclei, i.e. contact densities, for each five complexes for Eu(III) and Np(IV) systems. We compared the root mean square deviation values of their isomer shifts between experiment and calculation by changing the mixing ratio of Hartree-Fock exchange parameter from 0 to 100% at intervals of 10%. As the result, it was indicated that the mixing ratio of 30 and 60% for Eu and Np benchmark systems, respectively, gives the smallest deviation values. Mulliken’s spin population analysis indicated that the covalency in the metal-ligand bonds for both Eu and Np complexes decreases with increasing the Hartree-Fock exchange admixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nash, K.L.: A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extr. Ion Exch. 11, 729–768 (1993)

    Article  Google Scholar 

  2. Oigawa, H.: Review of ADS and P&T programme in Japan. Proceedings of 13th OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (IEMPT-13) 37–43 (2015)

  3. Kaltsoyannis, N.: Recent developments in computational actinide chemistry. Chem. Soc. Rev. 32, 9–16 (2003)

    Article  Google Scholar 

  4. Schreckenbach, G., Shamov, G.A.: Theoretical actinide molecular science. Acc. Chem. Res. 43, 19–29 (2010)

    Article  Google Scholar 

  5. Platas-Iglesias, C., Roca-Sabio, A., Regueiro-Figueroa, M., Esteban-Gomez, D., de Blas, A., Rodríguez-Blas, T.: Applications of density functional theory (DFT) to investigate the structural, spectroscopic and magnetic properties of lanthanide (III) complexes. Curr. Inorg. Chem. 1, 91–116 (2011)

    Article  Google Scholar 

  6. Wang, D., van Gunsteren, W.F., Chai, Z.: Recent advances in computational actinoid chemistry. Chem. Soc. Rev. 41, 5836–5865 (2012)

    Article  Google Scholar 

  7. Kaneko, M., Miyashita, S., Nakashima, S.: Benchmark study of Mössbauer isomer shifts of Eu and Np complexes by relativistic DFT calculations for understanding the bonding nature of f-block compounds. Dalton Trans. 44, 8080–8088 (2015)

    Article  Google Scholar 

  8. Kaneko, M., Miyashita, S., Nakashima, S.: Computational study on Mössbauer isomer shifts of some organic-neptunium (IV) complexes. Croat. Chem. Acta. 88, 347–353 (2016)

    Article  Google Scholar 

  9. Kaneko, M., Watanabe, M., Miyashita, S., Nakashima, S.: Bonding study on trivalent europium complexes by combining Mössbauer isomer shifts with density functional calculations. Radioisotopes 66, 289–300 (2017)

    Article  Google Scholar 

  10. Gütlich, P., Link, R., Trautwein, A.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Heidelberg (1978)

    Book  Google Scholar 

  11. Kaneko, M., Miyashita, S., Nakashima, S.: Bonding study on the chemical separation of Am(III) from Eu(III) by S-, N-, and O-donor ligands by means of all-electron ZORA-DFT calculation. Inorg. Chem. 54, 7103–7109 (2015)

    Article  Google Scholar 

  12. Kaneko, M., Watanabe, M., Matsumura, T.: The separation mechanism of Am(III) from Eu(III) by diglycolamide and nitrilotriacetamide extraction reagents using DFT calculations. Dalton Trans. 45, 17530–17537 (2016)

    Article  Google Scholar 

  13. Kaneko, M., Watanabe, M., Miyashita, S., Nakashima, S.: Roles of d- and f-orbital electrons in the complexation of Eu(III) and Am(III) ions with alkyldithiophosphinic acid and alkylphosphinic acid using scalar-relativistic DFT calculations. J. Nucl. Radiochem. Sci. 17, 9–15 (2017)

    Google Scholar 

  14. Tao, J., Perdew, J.P., Staroveroc, V.N., Scuseria, G.E.: Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401_1-146401_4 (2003)

    Article  ADS  Google Scholar 

  15. Neese, F., Petrenko, T.: Quantum Chemistry and Mössbauer Spectroscopy. Springer, Heidelberg (2011)

    Book  Google Scholar 

  16. Neese, F.: The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012)

    Article  Google Scholar 

  17. Nakajima, T., Hirao, K.: The Douglas-Kroll-Hess approach. Chem. Rev. 112, 385–402 (2012)

    Article  Google Scholar 

  18. Visscher, L., Dyall, K.G.: Dirac-fock atomic electronic structure calculations using different nuclear charge distributions. Atom. Data Nucl. Data Tabl. 67, 207–224 (1997)

    Article  ADS  Google Scholar 

  19. Pantazis, D.A., Neese, F.: All-electron scalar relativistic basis sets for the lanthanides. J. Chem. Theory Comput. 5, 2229–2238 (2009)

    Article  Google Scholar 

  20. Pantazis, D.A., Neese, F.: All-electron scalar relativistic basis sets for the actinides. J. Chem. Theory Comput. 7, 677–684 (2011)

    Article  Google Scholar 

  21. Pantazis, D.A., Chen, X., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008)

    Article  Google Scholar 

  22. Neese, F.: An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem. 35, 1740–1747 (2003)

    Article  Google Scholar 

  23. Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356, 98–109 (2009)

    Article  Google Scholar 

  24. Depaoli, G., Russo, U., Valle, G., Grandjean, F., Williams, A.F., Long, G.J.: 4f orbital covalence in (η 5-C5 H 5)3Eu(THF) as revealed by europium-151 Mössbauer spectroscopy. J. Am. Chem. Soc. 116, 5999–6000 (1994)

    Article  Google Scholar 

  25. Katada, M., Ishiyama, T., Kawata, S., Kondo, M., Kitagawa, S: 151Eu-Mössbauer spectroscopic studies of europium complexes. Conference proceesings Vol. 50 “ICAME-95”, ed. ortalli, I., SIF, Bologna (1996)

  26. Burger, K., Nemes-Vetéssy, Z., Vértes, A., Kuzmann, E., Suba, M., Kiss, J.T., Ebel, H., Ebel, M.: Mössbauer study of mixed-ligand complexes of europium(III). Struct. Chem. 1, 251–258 (1990)

    Article  Google Scholar 

  27. Karraker, D.G., Stone, J.A.: Bis(cyclooctatetraenyl)neptunium(III) and –plutonium(III) compounds. J. Am. Chem. Soc 96, 6885–6888 (1974)

    Article  Google Scholar 

  28. Karakker, D.G., Stone, J.A.: Covalency of neptunium(IV) tris(cyclopentadienyl) compounds from Mössbauer spectra. Inorg. Chem. 18, 2205–2207 (1979)

    Article  Google Scholar 

  29. Karakker, D.G., Stone, J.A.: Mössbauer and magnetic suspectibility studies of uranium(III), uranium(IV), neptunium(III), and neptunium(IV) compounds with the cyclopentadiene ion. Inorg. Chem. 11, 1742–1746 (1972)

    Article  Google Scholar 

  30. Deeney, F.A., Delaney, J.A., Ruddy, V.P.: Non-linearity and hysteresis effects in the variation with temperature of the isomer shift in Eu2O3. Phys. Lett. A 27, 571–572 (1968)

    Article  ADS  Google Scholar 

  31. Wortmann, G., Blumenröder, S., Freimuth, A., Riegel, D.: 151Eu-Mössbauer study of the high-Tc superconductor EuBa2Cu3O7−x. Phys. Lett. A 126, 434–438 (1988)

    Article  ADS  Google Scholar 

  32. Nemykin, V.N., Hadt, R.G.: Influence of Hartree-Fock exchange on the calculated Mössbauer isomer shifts and quadruple splittings in ferrocene derivatives using density functional theory. Inorg. Chem. 45, 8297–8307 (2006)

    Article  Google Scholar 

  33. Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions I. J. Chem. Phys. 23, 1833–1840 (1955)

    Article  ADS  Google Scholar 

  34. Gerth, G., Kienle, P., Luchner, K.: Chemical effects on the isomer shift in 151Eu. Phys. Lett. 27A, 557–558 (1968)

    Article  ADS  Google Scholar 

  35. Brix, P., Hüfner, S., Kienle, P., Quitmann, D.: Isomer shift on Eu151. Phys. Lett 13, 140–142 (1964)

    Article  ADS  Google Scholar 

  36. Greenwood, N.N., Gibb, T.C.: Mössbauer Spectroscopy, pp. 596–604. Chapman and Hall Ltd., London (1971)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP17K14915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kaneko.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017

Edited by Valentin Semenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, M., Watanabe, M., Miyashita, S. et al. Benchmark study of DFT with Eu and Np Mössbauer isomer shifts using second-order Douglas-Kroll-Hess Hamiltonian. Hyperfine Interact 239, 20 (2018). https://doi.org/10.1007/s10751-018-1495-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1495-1

Keywords

Navigation