Hyperfine Interactions

, 237:141 | Cite as

New superconductivity dome in LaFeAsO1−x F x far away from magnetism and accompanied by structural transition

  • J. Yang
  • Guo-qing Zheng
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2016), Leuven, Belgium, 3-8 July 2016


We report on the discovery and novel physics of a new superconductivity dome in LaFeAsO1−x F x with high-doping rate (0.25 ≤x≤0.75) synthesized by using the high-pressure technique. The maximal critical temperature T c = 30 K peaked at x opt = 0.5 ∼0.55, which is even higher than that at x≤ 0.2. By nuclear magnetic resonance (NMR), we find that the new superconducting dome is far away from a magnetically ordered phase without low-energy magnetic fluctuations. Instead, NMR and transmission electron microscopy measurements indicate that a C4 rotation symmetry-breaking structural transition takes place for x> 0.5 above T c . The electrical resistivity shows a temperature-linear behavior around the doping level where the crystal transition temperature extrapolate to zero and T c is the maximal, suggesting the importance of quantum fluctuations associated with the structural transition. Our results point to a new paradigm of high temperature superconductivity.


Iron-based superconductors New superconductivity dome NMR TEM Structural phase transition 


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    Ren, Z.A., Lu, W., Yang, J., Yi, W., Shen, X.L., Li, Z.C., Che, G.C., Dong, X.L., Sun, L.L., Zhou, F., Zhao, Z.X.: Chin. Phys. Lett. 25, 2215 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Lee, P.A., Nagaosa, N., Wen, X.G.: Rev. Mod. Phys. 78, 17 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Mathur, N.D., Grosche, F.M., Julian, S.R., Walker, I.R., Freye, D.M., Haselwimmer, R.K.W., Lonzarich, G.G.: Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Luetkens, H., Klauss, H.H., Kraken, M., Litterst, F.J., Dellmann, T., Klingeler, R., Hess, C., Khasanov, R., Amato, A., Baines, C., Kosmala, M., Schumann, O.J., Braden, M., Hamann-Borrero, J., Leps, N., Kondrat, A., Behr, G., Werner, J., Buechner, B.: Nat. Mater. 8, 305 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Oka, T., Li, Z., Kawasaki, S., Chen, G.F., Wang, N.L., Zheng, G.-Q.: Phys. Rev. Lett. 108, 047001 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Yang, J., Zhou, R., Wei, L.L., Yang, H.X., Li, J.Q., Zhao, Z.X., Zheng, G.-Q.: Chin. Phys. Lett. 32, 107401 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Narath, A.: Phys. Rev. 162, 320 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    Matano, K., Ren, Z.A., Dong, X.L., Sun, L.L., Zhao, Z.X., Zheng, G.-Q.: Europhys. Lett. 83, 57001 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Abragam, A.: T h e P r i n c i p l e s o f N u c l e a r M a g n e t i s m. Oxford University Press, London (1961)Google Scholar
  11. 11.
    Fu, M., Torchetti, D.A., Imai, T., Ning, F.L., Yan, J.Q., Sefat, A.S.: Phys. Rev. Lett. 109, 247001 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Ma, C., Zeng, L.J., Yang, H.X., Shi, H.L., Che, R.C., Liang, C.Y., Qin, Y.B., Chen, G.F., Ren, Z.A., Li, J.Q.: Europhys. Lett. 84, 47002 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    de la Cruz, C., Huang, Q, Lynn, J.W., Li, J.Y., Ratcliff, W.I.I., Zarestky, J.L., Mook, H.A., Chen, G.F., Luo, J.L., Wang, N.L., Dai, P.C.: Nature 453, 899 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Sefat, A.S., Jin, R., McGuire, M.A., Sales, B.C., Singh, D.J., Mandrus, D.: Phys. Rev. Lett. 101, 117004 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Zhou, R., Li, Z., Yang, J., Sun, D.L., Lin, C.T., Zheng G.-Q.: Nat. Commun. 4, 2265 (2013)ADSGoogle Scholar
  16. 16.
    Chu, J.H., Analytis, J.G., De Greve, K., McMahon, P.L., Islam, Z., Yamamoto, Y., Fisher, I.R.: Science 329, 824 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Yi, M., Lu, D.H., Chu, J.H., Analytis, J.G., Sorinia, A.P., Kemper, A.F., Moritz, B., Mod, S.K., Moore, R.G., Hashimoto, M., Lee, W.S., Hussain, Z., Devereaux, T.P., Fisher, I.R., Shen, Z.X.: Natl. Acad. Sci. USA 108, 6878 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Fernandes, R.M., Chubukov, A.V., Schmalian, J.: Nat. Phys. 10, 97 (2014)CrossRefGoogle Scholar
  19. 19.
    Fernandes, R.M., Bohmer, A.E., Meingast, C., Schmalian, J.: Phys. Rev. Lett. 111, 137001 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Kontani, H., Onari, S.: Phys. Rev. Lett. 104, 157001 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Lee, C.C., Yin, W.G., Ku, W.: Phys. Rev. Lett 103, 267001 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Kawasaki, S., Shimada, K., Chen, G.F., Luo, J.L., Wang, N.L., Zheng G.-Q.: Phys. Rev. B 78(R), 220506 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Li, Z., et al.: Phys. Rev. B 83(R), 140506 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Yuan, H.Q., Grosche, F.M., Deppe, M., Geibel, C., Sparn, G., Steglich, F. Science 302, 2104 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Physics and Beijing National Laboratory for Condensed Matter PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsOkayama UniversityOkayamaJapan

Personalised recommendations