Advertisement

Hyperfine Interactions

, 237:117 | Cite as

Growth of Ga2O3 by furnace oxidation of GaN studied by perturbed angular correlations

  • Michael Steffens
  • Reiner Vianden
  • Alberto F. Pasquevich
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2016), Leuven, Belgium, 3-8 July 2016

Abstract

Ga2O3 is a promising material for use in “solar-blind” UV-detectors which can be produced efficiently by oxidation of GaN. In this study we focus on the evolution of the oxide layer when GaN is heated in air. The experimental method applied is the perturbed angular correlation (PAC) spectroscopy of γ-rays emitted by radioactive nuclides, here 111Cd and 181Ta, whose parent nuclei are ion implanted into films of GaN grown on sapphire. As the emission pattern for nuclei in GaN is clearly distinct from that of nuclei in Ga2O3, the fraction of probe nuclei in the oxide layer can be directly measured and allows to follow the time dependent growth of the oxide on a scale of less than 100 nm. Additional measurements were carried out with the oxidized sample held at fixed temperatures in the temperature range from 19 K to 973 K showing transitions between the hyperfine interactions of 111Cd in the oxide matrix both at high and low temperatures. A model for these transitions is proposed.

Keywords

Perturbed angular correlation spectroscopy TDPAC Gallium nitride Gallium oxide Self-trapped hole Furnace oxidation 

References

  1. 1.
    Weng, W., Hsueh, T., Chang, S., Huang, G., Hsueh, H.: IEEE Sensors J. 11(4), 999 (2011). doi: 10.1109/JSEN.2010.2062176 CrossRefGoogle Scholar
  2. 2.
    Frauenfelder, H.: Annu. Rev. Nucl. Sci 2(1), 129 (1953). doi: 10.1146/annurev.ns.02.120153.001021 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Blachot, J.: Nucl. Data Sheets 110(6), 1239 (2009). doi: 10.1016/j.nds.2009.04.002 ADSCrossRefGoogle Scholar
  4. 4.
    Wu, S.: Nucl. Data Sheets 106(3), 367 (2005). doi: 10.1016/j.nds.2005.11.001 ADSCrossRefGoogle Scholar
  5. 5.
    Valentini, R., Vianden, R.: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623(4), 1002 (2010). doi: 10.1016/j.nima.2010.07.084 ADSCrossRefGoogle Scholar
  6. 6.
    Haaks, M., Valentini, R., Vianden, R.: Phys. Status Solidi C 4, 4036 (2007). doi: 10.1002/pssc.200675869 ADSCrossRefGoogle Scholar
  7. 7.
    Biersack, J.P., Haggmark, L.G.: Nucl. Instrum. Meth. 174(1–2), 257 (1980). doi: 10.1016/0029-554X(80)90440-1 ADSCrossRefGoogle Scholar
  8. 8.
    Ronning, C., Carlson, E., Davis, R.: Phys. Rep. 351(5), 349 (2001). doi: 10.1016/S0370-1573(00)00142-3 ADSCrossRefGoogle Scholar
  9. 9.
    King, S.W., Barnak, J.P., Bremser, M.D., Tracy, K.M., Ronning, C., Davis, R.F., Nemanich, R.J.: J. Appl. Phys. 84(9), 5248 (1998). doi: 10.1063/1.368814. http://link.aip.org/link/?JAP/84/5248/1 ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Forker, M., Herz, W., Hütten, U., Müller, M., ßeler, R.M., Schmidberger, J., Simon, D., Weingarten, A., Bedi, S.C.: Nucl. Inst. Methods Phys. Res. A Accelerators, Spectrometers, Detectors and Associated Equipment 327(2–3), 456 (1993). doi: 10.1016/0168-9002(93)90711-P ADSGoogle Scholar
  12. 12.
    Lorenz, K., Ruske, F., Vianden, R.: Phys. Status Solidi B 228(1), 331 (2001). doi: 10.1002/1521-3951(200111)228:1<331::AID-PSSB331>3.0.CO;2-6 ADSCrossRefGoogle Scholar
  13. 13.
    Kessler, P., Lorenz, K., Vianden, R.: Def. Diff. Forum 311, 167 (2011). doi: 10.4028/www.scientific.net/DDF.311.167 CrossRefGoogle Scholar
  14. 14.
    Lorenz, K., Geruschke, T., Alves, E., Vianden, R.: Hyperfine Interact 177, 89 (2007). doi: 10.1007/s10751-008-9708-7 ADSCrossRefGoogle Scholar
  15. 15.
    Bartels, J., Freitag, K., Marques, J., Soares, J., Vianden, R.: Hyperfine Interact 120-121, 397 (1999). doi: 10.1023/A:1017080902893 ADSCrossRefGoogle Scholar
  16. 16.
    Shitu, J., Pasquevich, A.F.: J. Phys. Condens. Matter 9(29), 6313 (1997). doi: 10.1088/0953-8984/9/29/016 ADSCrossRefGoogle Scholar
  17. 17.
    Blanco, M.A., Sahariah, M.B., Jiang, H., Costales, A., Pandey, R.: Phys. Rev. B 72, 184103 (2005). doi: 10.1103/PhysRevB.72.184103 ADSCrossRefGoogle Scholar
  18. 18.
    Pasquevich, A.F., Uhrmacher, M., Ziegeler, L., Lieb, K.P.: Phys. Rev. B 48, 10052 (1993). doi: 10.1103/PhysRevB.48.10052 ADSCrossRefGoogle Scholar
  19. 19.
    Pasquevich, A.: Hyperfine Interact 60, 791 (1990). doi: 10.1007/BF02399871 ADSCrossRefGoogle Scholar
  20. 20.
    Alves, E., da Silva, M., Marques, J., Soares, J., Freitag, K.: Mater. Sci. Eng. B 59(1–3), 207 (1999). doi: 10.1016/S0921-5107(98)00392-4 CrossRefGoogle Scholar
  21. 21.
    López, I.N., Utrilla, A.D., Nogales, E., Méndez, B., Piqueras, J., Peche, A., Ramírez-Castellanos, J., González-Calbet, J.M.: J. Phys. Chem. C 116(6), 3935 (2012). doi: 10.1021/jp210233p CrossRefGoogle Scholar
  22. 22.
    Jacobs, V.L., Rozsnyai, B.F.: Phys. Rev. A 34, 216 (1986). doi: 10.1103/PhysRevA.34.216 ADSCrossRefGoogle Scholar
  23. 23.
    Haas, H., Shirley, D.A.: J. Chem. Phys. 58(8), 3339 (1973). doi: 10.1063/1.1679661 ADSCrossRefGoogle Scholar
  24. 24.
    Sevik, C., Bulutay, C.: Phys. Rev. B 77, 125414 (2008). doi: 10.1103/PhysRevB.77.125414 ADSCrossRefGoogle Scholar
  25. 25.
    Varley, J.B., Janotti, A., Franchini, C., Van de Walle, C.G.: Phys. Rev. B 85, 081109 (2012). doi: 10.1103/PhysRevB.85.081109 ADSCrossRefGoogle Scholar
  26. 26.
    Åhman, J., Svensson, G., Albertsson, J.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 52(6), 1336 (1996). doi: 10.1107/S0108270195016404 CrossRefGoogle Scholar
  27. 27.
    Harwig, T., Kellendonk, F., Slappendel, S.: J. Phys. Chem. Solids 39(6), 675 (1978). doi: 10.1016/0022-3697(78)90183-X ADSCrossRefGoogle Scholar
  28. 28.
    Armstrong, A.M., Crawford, M.H., Jayawardena, A., Ahyi, A., Dhar, S.: J. Appl. Phys. 119(10), 103102 (2016). doi: 10.1063/1.4943261 ADSCrossRefGoogle Scholar
  29. 29.
    Onuma, T., Fujioka, S., Yamaguchi, T., Higashiwaki, M., Sasaki, K., Masui, T., Honda, T.: Appl. Phys. Lett. 103(4), 041910 (2013). doi: 10.1063/1.4816759 ADSCrossRefGoogle Scholar
  30. 30.
    Pasquevich, A.F., Rentería, M.: Def. Diff. Forum 311, 62 (2011). doi: 10.4028/www.scientific.net/DDF.311.62 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Steffens
    • 1
    • 2
  • Reiner Vianden
    • 2
  • Alberto F. Pasquevich
    • 3
    • 4
  1. 1.Fraunhofer Institute for Technological Trend Analysis INTEuskirchenGermany
  2. 2.Helmholtz - Institut für Strahlen- und Kernphysik der Universität BonnBonnGermany
  3. 3.Departamento de Física, IFLP, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.Comisión de Investigaciones Científicas de la Provincia de Buenos AiresLa PlataArgentina

Personalised recommendations