Hyperfine Interactions

, 237:48 | Cite as

Magnetically coupled clusters in aggregated maghemite ferrofluid: Mössbauer and magnetization study

  • M. Polikarpov
  • V. Cherepanov
  • M. Chuev
  • R. Gabbasov
  • I. Mischenko
  • V. Panchenko
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015


Mössbauer spectroscopy in a weak static magnetic field and measurements of isothermal magnetization loops were used to study the effect of polymer coating of the γ-Fe 2 O 3 nanoparticles on the magnetic properties of concentrated ensembles of such nanoparticles. It was found that the individual coating of the nanoparticles by a ∼ 1 nm layer of the polymer leads to the observable changes in the shapes of the Mössbauer spectra and the magnetization curves of the ensembles. Modeling of the experimental magnetization curves in the classical Langevin model and analysis of the Mössbauer spectra in the generalized multi-level relaxation model revealed that the establishment of interparticle magnetic dipole interactions leads to both a ∼ 30 % increase in the magnetic anisotropy constant and a ∼ 35 % increase in the width of the hysteresis loop.


Mössbauer spectroscopy Magnetization Superparamagnetic nanoparticles Dipole magnetic interaction 


  1. 1.
    Zeng, H., et al.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Jones, N.: The pull of stronger magnets. Nature 472, 22–23 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Gabbasov, R.R., Polikarpov, M.A., Cherepanov, V.M., Chuev, M.A., Panchenko, V.Y.: Breaking of interparticle interaction in conjugates of magnetic nanoparticles injected into the mice. Hyperfine Interact. 206, 71–74 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Ortega, D., Pankhurst, Q.A.: Magnetic hyperthermia. In: O’Brien, P. (ed.) Nanoscience: Volume 1: Nanostructures through Chemistry, pp. 60–88. Royal Society of Chemistry, Cambridge (2013)Google Scholar
  5. 5.
    Tiberto, P., Barrera, G., Celegato, F., Coïsson, M., Chiolerio, A., Martino, P., Pandolfi, P., Allia P.: Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur. Phys. J. B 86, 173 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Lee, D.K., Kim, Y.H., Kim, C.W., Cha, H.G., Kang, Y.S.: Vast magnetic monolayer film with surfactant-stabilized Fe 3 O 4 nanoparticles using Langmuir-Blodgett technique. J. Phys. Chem. B 111, 9288–93 (2007)CrossRefGoogle Scholar
  7. 7.
    Guo, Q., Teng, X., Rahman, S., Yang, H.: Patterned langmuir-blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc. 125, 630–1 (2003)CrossRefGoogle Scholar
  8. 8.
    Kawata, S., Sun, H. B., Tanaka, T., Takada, K.: Science 290, 1540 (2000)CrossRefGoogle Scholar
  9. 9.
    Xia, H., Wang, J., Tian, Y., Chen, Q.D., Du, X.B., Zhang, Y.L., He, Y., Sun, H.B.: Ferrofluids for fabrication of remotely controllable micro-nanomachines by Two-Photon polymerization. Adv. Mater. 22, 3204–3207 (2010)CrossRefGoogle Scholar
  10. 10.
    Mørup, S., Hansen, M.F., Frandsen, C.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010)CrossRefGoogle Scholar
  11. 11.
    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. r. Soc. London Ser. A 240(826), 599–642 (1948)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Varon, M., et al.: Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies. Sci. Rep. 3, 1234 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Banfield, J.F., et al.: Aggregation-Based Crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, J., Boyd, C., Luo, W.: Two mechanisms and a scaling relation for dynamics in ferrofluids. Phys. Rev. Lett. 77(2), 390–393 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Jain, N., Wang, Y., Jones, S.K., Hawkett, B.S., Warr, G.G.: Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26, 4465 (2010)CrossRefGoogle Scholar
  16. 16.
    Bryce, N.S., et al.: The composition and end-group functionality of sterically stabilized nanoparticles enhances the effectiveness of co-administered cytotoxins. Biomater. Sci. 1, 1260–1272 (2013)CrossRefGoogle Scholar
  17. 17.
    Polikarpov, M., Cherepanov, V., Chuev, M., Gabbasov, R., Mischenko, I., Jain, N., Jones, S., Hawkett, B., Panchenko V.: Mössbauer evaluation of the interparticle magnetic Interactions within the magnetic hyperthermia beads. J. Magn. Magn. Mater. 380, 347–352 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Polikarpov, M., Trushin, I., Yakimov, S.: Temperature relaxation of a superferromagnetic state in dispersed hematite. J. Magn. Magn. Mater. 116, 372 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Mørup, S., Tronc, E.: Superparamagnetic relaxation of weakly interacting particles. Phys. Rev. Lett. 72, 3278 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Dormann, J., D’Orazio, F., Lucari, F., et al.: Thermal variation of the relaxation time of the magnetic moment of y-Fe203 nanoparticles with interparticle interactions of various strengths. Phys. Rev. B 53, 14291 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Tronc, E., Ezzir, A., Cherkaoui, R., et al.: Surface-related properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 221, 63 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Chuev, M.A., Polikarpov, M.A., Cherepanov, V.M.: Magnetic-nanoparticle diagnostics based on analysis of hyperfine structure of Mössbauer spectra in a weak magnetic field. Doklady Phys. 55, 6–12 (2010)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Afanas’ev, A.M., Chuev, M.A.: New relaxation model for superparamagnetic particles in Mössbauer spectroscopy. JETP Lett. 74, 107 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Chuev, M.A.: Mössbauer spectra of single-domain particles in a weak magnetic field. J. Phys. Condens. Matter. 505201, 20 (2008)Google Scholar
  25. 25.
    Chuev, M.A.: Multilevel relaxation model for describing the Mossbauer spectra of nanoparticles in a magnetic field. JETP 114(4), 609–630 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Jones, D.H., Srivastava, K.K.P.: Many-state relaxation model for the Mössbauer spectra of super- paramagnets. Phys. Rev. B 34, 7542–7548 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    Chuev, M.A.: Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J. Phys. Condens. Matter 426003, 23 (2011)Google Scholar
  28. 28.
    Mischenko, I., Chuev, M., Cherepanov, V., Polikarpov, M., Panchenko, V.: Biodegradation of magnetic nanoparticles evaluated from Mössbauer and magnetization measurements. Hyperfine Interact. 219, 57–61 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Chuev, M. A.: Thermodynamics and magnetic dynamics of nonferromagnetic nanoparticles in the mirror of Mössbauer spectroscopy. Bull. RAS Phys. 79(8), 955–959 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Polikarpov
    • 1
  • V. Cherepanov
    • 1
  • M. Chuev
    • 2
  • R. Gabbasov
    • 1
  • I. Mischenko
    • 2
  • V. Panchenko
    • 1
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations