Skip to main content
Log in

Magnetically coupled clusters in aggregated maghemite ferrofluid: Mössbauer and magnetization study

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy in a weak static magnetic field and measurements of isothermal magnetization loops were used to study the effect of polymer coating of the γ-Fe 2 O 3 nanoparticles on the magnetic properties of concentrated ensembles of such nanoparticles. It was found that the individual coating of the nanoparticles by a ∼ 1 nm layer of the polymer leads to the observable changes in the shapes of the Mössbauer spectra and the magnetization curves of the ensembles. Modeling of the experimental magnetization curves in the classical Langevin model and analysis of the Mössbauer spectra in the generalized multi-level relaxation model revealed that the establishment of interparticle magnetic dipole interactions leads to both a ∼ 30 % increase in the magnetic anisotropy constant and a ∼ 35 % increase in the width of the hysteresis loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, H., et al.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002)

    Article  ADS  Google Scholar 

  2. Jones, N.: The pull of stronger magnets. Nature 472, 22–23 (2011)

    Article  ADS  Google Scholar 

  3. Gabbasov, R.R., Polikarpov, M.A., Cherepanov, V.M., Chuev, M.A., Panchenko, V.Y.: Breaking of interparticle interaction in conjugates of magnetic nanoparticles injected into the mice. Hyperfine Interact. 206, 71–74 (2012)

    Article  ADS  Google Scholar 

  4. Ortega, D., Pankhurst, Q.A.: Magnetic hyperthermia. In: O’Brien, P. (ed.) Nanoscience: Volume 1: Nanostructures through Chemistry, pp. 60–88. Royal Society of Chemistry, Cambridge (2013)

  5. Tiberto, P., Barrera, G., Celegato, F., Coïsson, M., Chiolerio, A., Martino, P., Pandolfi, P., Allia P.: Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur. Phys. J. B 86, 173 (2013)

    Article  ADS  Google Scholar 

  6. Lee, D.K., Kim, Y.H., Kim, C.W., Cha, H.G., Kang, Y.S.: Vast magnetic monolayer film with surfactant-stabilized Fe 3 O 4 nanoparticles using Langmuir-Blodgett technique. J. Phys. Chem. B 111, 9288–93 (2007)

    Article  Google Scholar 

  7. Guo, Q., Teng, X., Rahman, S., Yang, H.: Patterned langmuir-blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc. 125, 630–1 (2003)

    Article  Google Scholar 

  8. Kawata, S., Sun, H. B., Tanaka, T., Takada, K.: Science 290, 1540 (2000)

    Article  Google Scholar 

  9. Xia, H., Wang, J., Tian, Y., Chen, Q.D., Du, X.B., Zhang, Y.L., He, Y., Sun, H.B.: Ferrofluids for fabrication of remotely controllable micro-nanomachines by Two-Photon polymerization. Adv. Mater. 22, 3204–3207 (2010)

    Article  Google Scholar 

  10. Mørup, S., Hansen, M.F., Frandsen, C.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010)

    Article  Google Scholar 

  11. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. r. Soc. London Ser. A 240(826), 599–642 (1948)

    Article  ADS  MATH  Google Scholar 

  12. Varon, M., et al.: Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies. Sci. Rep. 3, 1234 (2013)

    Article  ADS  Google Scholar 

  13. Banfield, J.F., et al.: Aggregation-Based Crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751 (2000)

    Article  ADS  Google Scholar 

  14. Zhang, J., Boyd, C., Luo, W.: Two mechanisms and a scaling relation for dynamics in ferrofluids. Phys. Rev. Lett. 77(2), 390–393 (1996)

    Article  ADS  Google Scholar 

  15. Jain, N., Wang, Y., Jones, S.K., Hawkett, B.S., Warr, G.G.: Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26, 4465 (2010)

    Article  Google Scholar 

  16. Bryce, N.S., et al.: The composition and end-group functionality of sterically stabilized nanoparticles enhances the effectiveness of co-administered cytotoxins. Biomater. Sci. 1, 1260–1272 (2013)

    Article  Google Scholar 

  17. Polikarpov, M., Cherepanov, V., Chuev, M., Gabbasov, R., Mischenko, I., Jain, N., Jones, S., Hawkett, B., Panchenko V.: Mössbauer evaluation of the interparticle magnetic Interactions within the magnetic hyperthermia beads. J. Magn. Magn. Mater. 380, 347–352 (2015)

    Article  ADS  Google Scholar 

  18. Polikarpov, M., Trushin, I., Yakimov, S.: Temperature relaxation of a superferromagnetic state in dispersed hematite. J. Magn. Magn. Mater. 116, 372 (1992)

    Article  ADS  Google Scholar 

  19. Mørup, S., Tronc, E.: Superparamagnetic relaxation of weakly interacting particles. Phys. Rev. Lett. 72, 3278 (1994)

    Article  ADS  Google Scholar 

  20. Dormann, J., D’Orazio, F., Lucari, F., et al.: Thermal variation of the relaxation time of the magnetic moment of y-Fe203 nanoparticles with interparticle interactions of various strengths. Phys. Rev. B 53, 14291 (1996)

    Article  ADS  Google Scholar 

  21. Tronc, E., Ezzir, A., Cherkaoui, R., et al.: Surface-related properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 221, 63 (2001)

    Article  ADS  Google Scholar 

  22. Chuev, M.A., Polikarpov, M.A., Cherepanov, V.M.: Magnetic-nanoparticle diagnostics based on analysis of hyperfine structure of Mössbauer spectra in a weak magnetic field. Doklady Phys. 55, 6–12 (2010)

    Article  ADS  MATH  Google Scholar 

  23. Afanas’ev, A.M., Chuev, M.A.: New relaxation model for superparamagnetic particles in Mössbauer spectroscopy. JETP Lett. 74, 107 (2001)

    Article  ADS  Google Scholar 

  24. Chuev, M.A.: Mössbauer spectra of single-domain particles in a weak magnetic field. J. Phys. Condens. Matter. 505201, 20 (2008)

    Google Scholar 

  25. Chuev, M.A.: Multilevel relaxation model for describing the Mossbauer spectra of nanoparticles in a magnetic field. JETP 114(4), 609–630 (2012)

    Article  ADS  Google Scholar 

  26. Jones, D.H., Srivastava, K.K.P.: Many-state relaxation model for the Mössbauer spectra of super- paramagnets. Phys. Rev. B 34, 7542–7548 (1986)

    Article  ADS  Google Scholar 

  27. Chuev, M.A.: Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J. Phys. Condens. Matter 426003, 23 (2011)

    Google Scholar 

  28. Mischenko, I., Chuev, M., Cherepanov, V., Polikarpov, M., Panchenko, V.: Biodegradation of magnetic nanoparticles evaluated from Mössbauer and magnetization measurements. Hyperfine Interact. 219, 57–61 (2013)

    Article  ADS  Google Scholar 

  29. Chuev, M. A.: Thermodynamics and magnetic dynamics of nonferromagnetic nanoparticles in the mirror of Mössbauer spectroscopy. Bull. RAS Phys. 79(8), 955–959 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Polikarpov.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13–18 September 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polikarpov, M., Cherepanov, V., Chuev, M. et al. Magnetically coupled clusters in aggregated maghemite ferrofluid: Mössbauer and magnetization study. Hyperfine Interact 237, 48 (2016). https://doi.org/10.1007/s10751-016-1236-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1236-2

Keywords

Navigation