Advertisement

Hyperfine Interactions

, Volume 233, Issue 1–3, pp 35–40 | Cite as

An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

  • M. Diermaier
  • P. Caradonna
  • B. Kolbinger
  • C. Malbrunot
  • O. Massiczek
  • C. Sauerzopf
  • M. C. Simon
  • M. Wolf
  • J. Zmeskal
  • E. Widmann
Article

Abstract

The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

Keywords

Antihydrogen Atomic hydrogen Ground state hyperfine structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parthey, C.G.: Improved Measurement of the Hydrogen 1S −2S Transition Frequency. Phys. Rev. Lett. 107, 203001 (2011)CrossRefADSGoogle Scholar
  2. 2.
    Ramsey, N.F.: Experiments with separated oscillatory fields and hydrogen masers. Rev. Mod. Phys. 62(3), 541 (1990)CrossRefADSGoogle Scholar
  3. 3.
    Bluhm, R., Kostelecký, V.A., Russell, N.: CPT and Lorentz Tests in Hydrogen and Antihydrogen. Phys. Rev. Lett 82, 2254-2257 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Kuroda, N., et al.: A source of antihydrogen for in-flight hyperfine spectroscopy. Nat. Commun. 5, 3089 (2014)CrossRefADSGoogle Scholar
  5. 5.
    Rabi, I.I., et al.: The molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments. Phys. Rev. 55, 526 (1939)CrossRefADSGoogle Scholar
  6. 6.
    Kusch, P.: Redetermination of the Hyperfine Splitting of Hydrogen and Deuterium in Ground State. Phys. Rev. 100/4, 1188 (1955)CrossRefADSGoogle Scholar
  7. 7.
    Wittke, J.P., Dicke, R.H.: Redetermination of the Hyperfine Splitting in the Ground State of Atomic Hydrogen. Phys. Rev 96, 530 (1954)CrossRefADSGoogle Scholar
  8. 8.
    Essen, et al.: Frequency of the Hydrogen Maser. Nature 229, 110 (1971)CrossRefADSGoogle Scholar
  9. 9.
    Hellwig, et al.: Measurement of the Unperturbed Hydrogen Hyperfine Transition Frequency. IEEE Trans. Instrum. Meas. IM-19, 200 (1970)CrossRefGoogle Scholar
  10. 10.
    Federmann, S., Caspers, F., Mahner, E., Juhasz, B., Widmann, E.: Design of a 1.42 GHz Spin-Flip Cavity for Antihydrogen Atoms, Conf. Proc., C100523, MOPE054 (2010)Google Scholar
  11. 11.
    Prodell, A.G., Kusch, P.: The Hyperfine Structure of Hydrogen and Deuterium. Phys. Rev. 88(2), 184 (1952)CrossRefADSGoogle Scholar
  12. 12.
    McCullough, R.W., et al.: A new microwave discharge source for reactive atom beams. Meas. Sci. Technol. 4, 79 (1993)CrossRefADSGoogle Scholar
  13. 13.
    Majorana, E.: Oriented atoms in a variable magnetic field, Ettore Majorana Scientific Papers. Ed. by G. F. Bassani, Pisa: Springer , pp 113-136 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Diermaier
    • 1
  • P. Caradonna
    • 1
  • B. Kolbinger
    • 1
  • C. Malbrunot
    • 2
  • O. Massiczek
    • 1
  • C. Sauerzopf
    • 1
  • M. C. Simon
    • 1
  • M. Wolf
    • 1
  • J. Zmeskal
    • 1
  • E. Widmann
    • 1
  1. 1.Stefan Meyer Institute for Subatomic PhysicsAustrian Academy of SciencesViennaAustria
  2. 2.CERNGeneva 23Switzerland

Personalised recommendations