Advertisement

Hyperfine Interactions

, Volume 231, Issue 1–3, pp 101–106 | Cite as

Ab initio calculation of electric field gradient and magnetic hyperfine field in Fe-doped SnO2

  • Qiaoli Zhang
  • Daqing Yuan
  • Ping Fan
  • Yi Zuo
  • Yongnan Zheng
  • Xiaoqiang Ma
  • Juncheng Liang
  • Huanqiao Zhang
  • Shengyun Zhu
Article
  • 108 Downloads

Abstract

Ab initio calculations of the magnetic and electric hyperfine fields and the magnetic moments were performed for the Fe doped SnO2 dilute magnetic semiconductors with the Wien2k code embodying the full-potential linearized augmented plane-wave method. The calculated results for the neutral system and the different charged state systems with and without the oxygen vacancy show clearly that the ground state is all magnetic and that the addition of electrons and the appearance of oxygen vacancy can increase the magnetic moment and the magnetic hyperfine field and reduce the electric hyperfine field. The energy level splitting of the Fe-3d orbit can lead to enhancing the magnetic moment and, therefore, a very large magnetic moment of 5 μ B is obtained for the Sn15Fe1−O32 charged system.

Keywords

Fe-doped SnO2 O vacancy Ab initio calculation Magnetic and electric hyperfine field Magnetic moment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Das Sarma, S., Drew, H.D., Greene, R.L., Venkatesan, T.: Phys. Rev. Lett. 91, 077205 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Punnoose, A., Hays, J., Thurber, A., Engelhard, M.H., Kukkadapu, R.K., Wang, C., Shutthanandan, V., Thevuthasan, S.: Phys.Rev. B 72, 054402 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Appl. Phys. Lett. 84, 1332 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Hong, N.H., Sakai, J.: Physica. B 358, 265–268 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Fitzgerald, C.B., Venkatesann, M., Douvalis, A.P., et al.: J. Appl. Phys. 95, 7390 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Hu, S.J., Yan, S.S., Yao, X.X., Chen, Y.X., Liu, G.L., Mei, L.M.: Phys. Rev. B 75, 094412 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Wyckoff, R.W.G.: Crystal Structures, 2nd edn., vol. 1, p. 239. Inter science, New York (1963)Google Scholar
  8. 8.
    Rahman, G., García-Suárez, V.M., Hong, S.C.: Phys. Rev. B 78, 184404 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Wang, H.X., Yan, Y., Du, X.B., et al.: Appl. Phys. Lett. 107, 103923 (2010)Google Scholar
  10. 10.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Liutz, J.: WIEN2k, Techn. Universität, Wien, Austria (2001)Google Scholar
  11. 11.
    Perdew, J.P., Wang, Y., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Terakura, K., Oguchi, T., et al.: Phys. Rev. B 30, 4734 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Qiaoli Zhang
    • 1
  • Daqing Yuan
    • 1
  • Ping Fan
    • 1
  • Yi Zuo
    • 1
  • Yongnan Zheng
    • 1
  • Xiaoqiang Ma
    • 1
  • Juncheng Liang
    • 1
  • Huanqiao Zhang
    • 1
  • Shengyun Zhu
    • 1
  1. 1.China Institute of Atomic EnergyBeijingChina

Personalised recommendations