Advertisement

Hyperfine Interactions

, Volume 230, Issue 1–3, pp 141–146 | Cite as

Development of high-homogeneity magnetic field coil for 129Xe EDM experiment

  • Y. Sakamoto
  • C. P. Bidinosti
  • Y. Ichikawa
  • T. Sato
  • Y. Ohtomo
  • S. Kojima
  • C. Funayama
  • T. Suzuki
  • M. Tsuchiya
  • T. Furukawa
  • A. Yoshimi
  • T. Ino
  • H. Ueno
  • Y. Matsuo
  • T. Fukuyama
  • K. Asahi
Article

Abstract

We search for 129Xe EDM by using an active nuclear spin maser. In this experiment, the amplitude of the maser oscillation signal is one of the most important parameters that eventually determine the frequency precision. The amplitude is proportional to the ratio of the transverse spin relaxation time T 2 to the effective longitudinal spin relaxation time \(T_{1}^{\ast }\). In particular, for a spin maser of 3He (a co-magnetometer) for which \(T_{1}^{\ast }\) typically reaches ∼50 h, a long T 2 is needed. T 2 depends on the homogeneity of the magnetic field which is applied with coils in order to keep the spins under precession. In the present report, we discuss on the design and construction of a new coil which provided a root-mean square (rms) field gradient of less than 5.0 μG/cm. The result of the field measurement has shown that the field gradient in the cell fulfills the target condition \(\sqrt {\langle {(\nabla B_{z})^{2}} \rangle } <5\; \mu \text {G/cm}\), and in fact T 2 of 3He has been measured to be as long as 11,000 s.

Keywords

EDM Spin maser Magnetic coil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoshimi, A., et al.: Low-frequency 129Xe nuclear spin oscillator with optical spin detection. Phys. Lett. A 376, 1924 (2012)CrossRefADSGoogle Scholar
  2. 2.
    Yoshimi, A., et al.: Nuclear spin maser with an artificial feedback mechanism. Phys. Lett. A 304, 13 (2002)CrossRefADSMATHGoogle Scholar
  3. 3.
    Cates, G.D., Schaefer, S.R., Happer, W.: Relaxation of spins due to field inhomogeneities in gaseous samples at low magnetic fields and low pressures. Phys. Rev. A 37, 2877 (1987)CrossRefADSGoogle Scholar
  4. 4.
    Bidinosti, C.P., et al.: General solution of the hollow cylinder and concentric dc surface current. IEEE Mag. Lett. 5, 0800304 (2014)Google Scholar
  5. 5.
    Brys, T., et al.: Magnetic field stabilization for magnetically shielded volumes by external field coils. J. Res. Natl. Inst. Stand. Technol 110, 173 (2005)CrossRefGoogle Scholar
  6. 6.
    Cobham plc, Brook road, Wimborne, Dorset, BH21, 2BJ, UKGoogle Scholar
  7. 7.
    Tullney, K., et al.: Constrains on spin-dependent short-range interaction between nucleons. Phys Rev. Lett 111, 100801 (2013)CrossRefADSGoogle Scholar
  8. 8.
    Baker, C.A., et al.: Improved experiment limit on the electric dipole moment of the neutron. Phys. Rev. Lett 97, 131801 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Y. Sakamoto
    • 1
  • C. P. Bidinosti
    • 2
  • Y. Ichikawa
    • 1
    • 3
  • T. Sato
    • 1
  • Y. Ohtomo
    • 1
  • S. Kojima
    • 1
  • C. Funayama
    • 1
  • T. Suzuki
    • 1
  • M. Tsuchiya
    • 1
  • T. Furukawa
    • 4
  • A. Yoshimi
    • 5
  • T. Ino
    • 6
  • H. Ueno
    • 3
  • Y. Matsuo
    • 7
  • T. Fukuyama
    • 8
  • K. Asahi
    • 1
  1. 1.Department of PhysicsTokyo Institute of TechnologyMeguroJapan
  2. 2.Department of PhysicsUniversity of WinnipegWinnipegCanada
  3. 3.RIKEN Nishina CenterWakoJapan
  4. 4.Department of PhysicsTokyo Metropolitan UniversityHachiojiJapan
  5. 5.Research Core for Extreme Quantum WorldOkayama UniversityKitaJapan
  6. 6.Institute of Material Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
  7. 7.Department of Advanced SciencesHosei UniversityKoganeiJapan
  8. 8.Research Center for Nuclear Physics (RCNP)Osaka UniversityIbarakiJapan

Personalised recommendations