Hyperfine Interactions

, Volume 232, Issue 1–3, pp 79–85 | Cite as

Mössbauer study of stability and growth confinement of magnetic Fe3 O 4 drug carrier

  • L. Herojit Singh
  • S. S. Pati
  • A. C. Oliveira
  • V. K. Garg


Bare Fe3O4 and Fe3O4/zeolite composites have been investigated by Mössbauer spectroscopy. A confined growth of the nanoparticles has been observed after introduction of zeolite in the process of precipitation. Increase in the concentration of zeolite further decrease the particle size. A comparative study on the synthesis with zeolites 13x and ZSM5 has been done. Annealing on these nanoparticles shows that apart from the confinement of nanoparticles, zeolite enhances stability on the nanoparticles.


Mössbauer spectroscopy Zeolite Superparamagnetic iron oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Candiani, A., Konstantaki, M., Margulis, W., Pissadakis, S.: A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid. Optics Express 18, 24654 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, J., Zhao, S., Zhu, M., Zhu, Y., Zhang, Y., Liud, Z., Zhang, C.: 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B 2, 7583 (2014)CrossRefGoogle Scholar
  3. 3.
    Dib, S., Boufatit, M., Chelouaou, S., Sadi-Hassaine, F., Croissant, J., Long, J., Raehm, L., Charnay, C., Durand, J.O.: Versatile heavy metals removal via magnetic mesoporous nanocontainers. RSC Adv. 4, 24838 (2014)CrossRefGoogle Scholar
  4. 4.
    Lee, S.H., Yu, S.-H., Lee, J.E., Jin, A., Lee, D.J., Lee, N., Jo, H., Shin, K., Ahn, T.-Y, Kim, Y.-W., Choe, H., Sung, Y.-E., Hyeon, T.: Self-Assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 13, 4249 (2013)CrossRefGoogle Scholar
  5. 5.
    Bello, S.M., Luckie, R.A.M., Santos, L.F., Hinestroza, J.P., Mendieta, V.S.: Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of the HCl concentration during the activation. J. Nanopart. Res. 14, 1242 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhang, J.-M., Zhai, S.-R., Zhai, B., An, Q.-D., Ge, T.: Crucial factors affecting the physicochemical properties of sol–gel produced Fe3O4@SiO2–NH2 core–shell nanomaterials. J. Sol-Gel Sci. Technol. 64, 347 (2012)CrossRefGoogle Scholar
  7. 7.
    Zheng, J., Liu, Z.Q., Zhao, X.S., Liu, M., Liu, X., Chu, W.: One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23, 165601 (2012)Google Scholar
  8. 8.
    Lei, P., Boies, A.M., Calder, S., Girshick, S.L.: Thermal plasma synthesis of superparamagnetic iron oxide nanoparticles. Plasma Chem. Plasma Process 32, 519 (2012)CrossRefGoogle Scholar
  9. 9.
    Yao, Y., Jiang, H., Wu, J., Gu, D., Shen, L.: Synthesis of Fe3O4 /polyaniline nanocomposite in reversed micelle systems and its performance characteristics. Procedia Eng. 27, 664 (2012)CrossRefGoogle Scholar
  10. 10.
    Alam, S., Anand, C., Ariga, K., Mori, T., Vinu, A.: Unusual magnetic properties of size-controlled iron oxide nanoparticles grown in a nanoporous matrix with tunable pores. Angew. Chem. 121, 7494 (2009)CrossRefGoogle Scholar
  11. 11.
    Gal, I.J., Radovano, P.: Ion-exchange Equihbria of Synthetic 13X Zeolite with Ni2+, Co2+, Zn 2+ and Cd2+ Ions. J. Chem. Soc., Faraday Trans. I 71, 1671 (1975)CrossRefGoogle Scholar
  12. 12.
    Arruebo, M., Pacheco, R.F., Irusta, S., Arbiol, J., Ibarra, M.R., Santamaria, J.: Sustained release of doxorubicin from zeolite–magnetite nanocomposites prepared by mechanical activation. Nanotechnology 17, 4057 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Habrowska, A.M., Popiel, E.S.: Positron annihilation in zeolite 13X. J. Appl. Phys. 62, 15 (1987)CrossRefGoogle Scholar
  14. 14.
    Kokotailo, G.T., Lawton, S.L., Olson, D.H., Meier, W.M.: Structure of synthetic zeolite ZSM-5. Nature 272, 437 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    Zahmakiran, M., Ozkar, S.: Zeolite-confined ruthenium(0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride. Langmuir 25, 2667 (2009)CrossRefGoogle Scholar
  16. 16.
    Zahmakiran, M., Durap, F., Ozkar, S.: Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrog. Energy 35, 187 (2010)CrossRefGoogle Scholar
  17. 17.
    Erdem, E., Karapinar, N., Donat, R.: The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280, 309 (2004)CrossRefGoogle Scholar
  18. 18.
    Babarao, R., Jiang, J.: Unprecedentedly High selective adsorption of gas mixtures in rho zeolite-like metal-organic framework: A molecular simulation study. J. Am. Chem. Soc. 131, 11417 (2009)CrossRefGoogle Scholar
  19. 19.
    Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H., Tsapatsisl, M.: A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • L. Herojit Singh
    • 1
  • S. S. Pati
    • 1
  • A. C. Oliveira
    • 1
  • V. K. Garg
    • 1
  1. 1.Institute of PhysicsUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations