Hyperfine Interactions

, Volume 227, Issue 1–3, pp 29–43 | Cite as

Laser spectroscopy methods for probing highly charged ions at GSI

Test of QED in strong fields: status and perspectives
  • S. Schmidt
  • Ch. Geppert
  • Z. Andelkovic
  • for the LIBELLE & SpecTrap Collaborations


We describe two opposite and partly complementary experimental approaches for performing high-precision laser spectroscopy of dipole-forbidden transitions in highly charged ions. We report on the wavelength determination of the ground state hyperfine transitions in hydrogen-like and lithium-like bismuth ions confined in the experimental storage ring at GSI. Direct comparison of the experimental results with theoretical predictions reveals an agreement of the specific hyperfine-structure splitting difference \(\Delta ^{\prime }E\) within the 1- σ confidence interval of the experimental value. Additionally, we discuss an experimental strategy based on ion manipulation and cooling in a cylindrical open-endcap Penning trap to further increase the precision of the previous measurement. Trapping and laser cooling of external produced singly charged magnesium ions is demonstrated. This represents a first step towards sympathetic cooling of simultaneously confined ion species in order to perform laser spectroscopy measurements on highly charged ions nearly at rest. These measurements will offer new prospects in the field of laser-based tests of quantum electrodynamics in strong electric and magnetic fields.


Highly charged ions Laser spectroscopy Quantum electrodynamics Storage rings Ion traps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanneke, D., Fogwell, S., Gabrielse, G.: New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Bouchendira, R., Clade, P., Guellati-Khelifa, S., Nez, F., Biraben, F.: New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Beiersdorfer, P.: Testing QED and atomic-nuclear interactions with high-Z ions. J. Phys. B: At. Mol. Phys. 43, 074032 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Beier, T.: The g j factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 339, 79 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Shabaev, V.M.: Hyperfine structure of hydrogen-like ions. J. Phys. B: At. Mol. Phys. 27, 5825 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Shabaev, V.M., Artemyev, A.N., Yerokhin, V.A., Zherebtsov, O.M., Soff, G.: Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Levine, M.A., Marrs, R.E., Henderson, J.R., Knapp, D.A., Schneider, M.B.: The electron beam ion trap: a new instrument for atomic physics measurements. Phys. Scr. T22, 157 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    Crespo López-Urrutia, J.R., Beiersdorfer, P., Savin, D.W., Widmann, K.: Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Crespo López-Urrutia, J.R., Beiersdorfer, P., Widmann, K., Birkett, B.B., Mårtensson-Pendrill, A.-M., Gustavsson, M.GH.: Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions185Re74+ and187Re74+. Phys. Rev. A 57, 879 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Beiersdorfer, P., et al.: Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Beiersdorfer, P., Osterheld, A.L., Scofield, J.H., Crespo López-Urrutia, J.R., Widmann, K.: Measurement of QED and Hyperfine Splitting in the 2s 1/2−2p 3/2 X-Ray Transition in Li-like209 B i 80+. Phys. Rev. Lett. 80, 3022–3025 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Klaft, I., et al.: Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike209 B i 82+. Phys. Rev. Lett. 73, 2425 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Seelig, P., et al.: Ground state hyperfine splitting of hydrogenlike207 P b 81+ by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Kluge, H.-J., et al.: HITRAP - A facility at GSI for highly charged ions. Adv. Quant. Chem. 53, 83 (2008)CrossRefGoogle Scholar
  15. 15.
    Steck, M., Beller, P., Beckert, K., Franzke, B., Nolden, F.: Electron cooling experiments at the ESR. Nucl. Instrum. Meth. A 532, 357 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Hannen, V., et al.: Detection system for forward emitted photons at the experimental storage ring at GSI. J. Instum. (2013). in printGoogle Scholar
  17. 17.
    Anielski, D.: Entwicklung eines Detektoraufbaus zur Bestimmung der 2s-Hyperfeinstrukturaufspaltung von209 B i 80+ am Experimentierspeicherring an der GSI. Diploma Thesis, Westfälische Wilhelms-Universität Münster (2010)Google Scholar
  18. 18.
    Lochmann, M.: Laserspektroskopie der Grundzustands-Hyperfeinstruktur des lithiumähnlichen209 B i 80+. PhD Thesis, Johannes Gutenberg-Universität Mainz (2013)Google Scholar
  19. 19.
    Lochmann, M., et al.: to be submitted to Phys. Rev. Lett. (2014)Google Scholar
  20. 20.
    Andreev, O.V., Glazov, D.A., Volotka, A.V., Shabaev, V.M., Plunien, G.: Evaluation of the screened vacuum-polarization corrections to the hyperfine splitting of Li-like bismuth. Phys. Rev. A 85, 022510 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Vollbrecht, J.: PhD Thesis, Westfälische Wilhelms-Universität Münster in preparation Google Scholar
  22. 22.
    Andjelkovic, Z., Bharadia, S., Sommer, B., Vogel, M., Nörtershäuser, W.: Towards high precision in-trap laser spectroscopy of highly charged ions. Hyp. Int. 196, 81–91 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Pedersen, H.B., Strasser, D., Heber, O., Rappaport, M.L., Zajfman, D.: Stability and loss in an ion-trap resonator. Phys. Rev. A 65, 042703 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Weinberg, G., Beck, B.R., Steiger, J., Church, D.A., McDonald, J., Schneider, D.: Electron capture from H 2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV. Phys. Rev. A 57, 4452 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Wineland, D.J., Dehmelt, H.G.: Principles of the stored ion calorimeter. Appl. Phys. 46, 919–930 (1975)CrossRefGoogle Scholar
  27. 27.
    Gruber, L., Holder, J.P., Schneider, D.: Formation of strongly coupled plasmas from multicomponent ions in a penning trap. Phys. Scr. 71, 60 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Andelkovic, Z.: Setup of a penning trap for precision laser spectroscopy at HITRAP. Johannes Gutenberg-Universität Mainz, PhD Thesis (2012)Google Scholar
  29. 29.
    Vogel, M., Winters, D.FA., Segal, D.M., Thompson, R.C.: Proposed precision laser spectrometer for trapped, highly charged ions. Rev. Sci. Instrum. 76, 103102–103102 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Stopping highly charged ions in a laser-cooled one component plasma of ions. Int. J. Mass. Spectrom. 251, 179–189 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Bussmann, M., Schramm, U., Habs, D.: Preparing a laser cooled plasma for stopping highly charged ions. Europ. Phys. J. D 45, 129–132 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Andelkovic, Z., Cazan, R., et al.: Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions. Phys. Rev. A 87, 033423 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Murböck, T., et al.: SpecTrap: precision spectroscopy of highly charged ionsstatus and prospects. Phys. Scr. 2013, 014096 (2013)CrossRefGoogle Scholar
  34. 34.
    Cazan, R., Geppert, C., Nörtershäuser, W., Sánchez, R.: Towards sympathetic cooling of trapped ions with laser-cooled Mg+ ions for mass spectrometry and laser spectroscopy. Hyp. Int. 196, 177–189 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Davidson, R.C. (ed.): Physics of Nonneutral Plasmas. Addison-Wesley, New York, (1990)Google Scholar
  36. 36.
    Fajans, J., Dubin, D.H.E. (eds.): Non-Neutral Plasma Physics II. AIP, New York, (1995)Google Scholar
  37. 37.
    Huang, X.-P., Anderegg, F., Hollmann, E.M., Driscoll, C.F., O’Neil, T.M.: Steady-state confinement of non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 78, 875 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Bharadia, S., Vogel, M., Segal, D.M., Thompson, R.C.: Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105–1115 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Yu, J., Desaintfuscien, M., Plumelle, F.: Ion density limitation in a Penning trap due to the combined effect of asymmetry and space charge. Appl. Phys. B 48, 51–54 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    van Eijkelenborg, M.A., Storkey, M.EM., Segal, D.M., Thompson, R.C.: Sympathetic cooling and detection of molecular ions in a Penning trap. Phys. Rev. A 60, 3903 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    Albrecht, S., Altenburg, S., Siegel, C., Herschbach, N., Birkl, G.: A laser system for the spectroscopy of highly-charged bismuth ions. Appl. Phys. B 107, 1069 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Schuch, R., et al.: The new Stockholm Electron Beam Ion Trap (S-EBIT). J. Instrum. 5, C12018 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Schmidt
    • 1
    • 2
    • 3
  • Ch. Geppert
    • 1
    • 2
    • 4
  • Z. Andelkovic
    • 2
    • 3
  • for the LIBELLE & SpecTrap Collaborations
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für KernchemieJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Helmholtzzentrum für Schwerionenforschung (GSI)DarmstadtGermany
  4. 4.Helmholtzinstitut MainzJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations