Hyperfine Interactions

, Volume 227, Issue 1–3, pp 125–130 | Cite as

Recent developments in collinear laser spectroscopy with relevance for LASPEC

  • W. Nörtershäuser
  • I. Moore
  • Ch. Geppert
  • for the LASPEC Collaboration


We give a short summary on new developments in collinear laser spectroscopy since the appearance of the Technical Design Report (TDR) of MATS & LASPEC that will be also of relevance for laser spectrosopcopy at FAIR’s Super-Fragment Separator.


Collinear laser spectroscopy Nuclear ground state properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheal, B., Flanagan, K.T.: Progress in laser spectroscopy at radioactive ion beam facilities. J. Phys. G 37, 113101 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Blaum, K., Dilling, J., Nörtershäuser, W.: Precision Atomic Physics Techniques for Nuclear Physics with Radioactive Beams. Physica Scripta T152, 014017 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Nörtershäuser, W., Campbell, P., the LaSpec Collaboration: LaSpec at FAIRS low energy beamline: a new perspective for laser spectroscopy of radioactive nuclei. Hyperf. Int. 171, 149 (2006)CrossRefGoogle Scholar
  4. 4.
    Rodriguez, D., et al.: MATS and LaSpec: high-precision experiments using ion traps and lasers at FAIR. Europ. Phys. J. Spec. Top. 183, 1 (2010). Hyperf. Int. 171, 149 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Herfurth, F., et al.: A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instr. Meth. Phys. Res. A 469, 254 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Nieminen, A., et al.: On-line ion cooling and bunching for collinear laser spectroscopy. Phys. Rev. Lett. 88, 094801 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Campbell, P., et al.: Laser spectroscopy of cooled zirconium fission fragments. Phys. Rev. Lett. 89, 082501 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Flanagan, K.T., et al.: Nuclear Spins and Magnetic Moments of Cu-71,Cu-73,Cu-75: inversion of π 2p 3/2 and π 1f 5/2 Levels in Cu-75. Phys. Rev. Lett. 103, 142501 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Flanagan, K.T., et al.: Experimental determination of an I = 2 ground state in 72Cu, 74Cu. Phys. Rev. C 82, 041302R (2010)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Vingerhoets, P., et al.: Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects. Phys. Rev. C 82, 064311 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Vingerhoets, P., et al.: Magnetic and quadrupole moments of neutron deficient 58−62Cu isotopes. Phys. Lett. B. 703, 34 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Cheal, B., et al.: Laser spectroscopy of gallium isotopes beyond N = 50. J. Phys. Conf. Ser. 381, 012071 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Cheal, B., et al.: Discovery of a long-lived low-lying isomeric state in 80Ga. Phys. Rev. C 82, 051302 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Cheal, B., et al.: Nuclear spins and moments of ga isotopes reveal sudden structural changes between N = 40 and N = 50. Phys. Rev. Lett. 104, 252502 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Mane, E., et al.: Ground-state spins and moments of 72,74,76,78Ga nuclei. Phys. Rev. C 84, 024303 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Procter, T.J., et al.: Nuclear mean-square charge radii of 63,64,66,68−82Ga nuclei: no anomalous behavior at N = 32. Phys. Rev. C 86, 034329 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Papuga, J., et al.: Spins and magnetic moments of 49K and 51K: establishing the 1/2+ and 3/2+ level ordering beyond N = 28. Phys. Rev. Lett. 110, 172503 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Yordanov, D.T., et al.: Electromagnetic moments, and isomers of 107−129Cd. Phys. Rev. Lett. 110, 192501 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Mane, E., et al.: First experimental determination of the charge radius of 74Rb and its application in tests of the unitarity of the cabibbo-kobayashi-maskawa matrix. Phys. Rev. Lett. 107, 212502 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Voss, A., et al.: First use of high-frequency intensity modulation of narrow-linewidth laser light and its application in determination of 206,205,204Fr ground-state properties. Phys. Rev. Lett. 111, 122501 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Minamisono, K., et al.: Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL. Nucl. Instr. Meth. Phys. Res. A 709, 85 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Lunney, D., Bachelet, C., Guenaut, C., Henry, S., Sewtz, M.: COLETTE: a linear Paul-trap beam cooler for the on-line mass spectrometer MISTRAL. Nucl. Instr. Meth. Phys. Res. A 598, 379 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Ketelaer, J., et al.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instr. Meth. Phys. Res. A 594, 162 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Beyer, T., et al.: An RFQ cooler and buncher for the TRIGA-SPEC experiment. Appl. Phys. B. doi: 10.1007/s00340-013-5719-4 (2013)
  25. 25.
    Cheal, B., et al.: Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher. Phys. Rev. Lett. 102, 222501 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Baczynska, K., et al.: Nuclear spin determination of 100m Y by collinear laser spectroscopy of optically pumped ions. J. Phys. G 37, 105103 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Charlwood, F.C., et al.: Ground state properties of manganese isotopes across the N = 28 shell closure. Phys. Lett. B 690, 346 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Reinhed, P., et al.: Cryogenic keV ion-beam storage in ConeTrap - A tool for ion-temperature control. Nucl. Instr. Meth. Phys. Res. A 621, 83 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Klose, A., et al.: Tests of atomic charge-exchange cells for collinear laser spectroscopy. Nucl. Instr. Meth. Phys. Res. A 678, 114 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Yordanov, D.T., et al.: Nuclear charge radii of 21−32Mg. Phys. Rev. Lett. 108, 042504 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Krieger, A., et al.: Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy. Nucl. Instr. Meth. Phys. Res. A 632, 23 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Will, E., et al.: Demonstration of the two-chamber approach for laser spectroscopic high voltage measurements. these proceedingsGoogle Scholar
  33. 33.
    Krieger, A., et al.: Nuclear charge radius of 12Be. Phys. Rev. Lett. 108, 142501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Procter, T.J., et al.: Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line. J. Phys. Conf. Ser. 381, 012070 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • W. Nörtershäuser
    • 1
  • I. Moore
    • 2
  • Ch. Geppert
    • 1
  • for the LASPEC Collaboration
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhysicsUniversity Of JyväskyläJyväskyläFinland

Personalised recommendations