Advertisement

Hyperfine Interactions

, Volume 227, Issue 1–3, pp 125–130 | Cite as

Recent developments in collinear laser spectroscopy with relevance for LASPEC

  • W. Nörtershäuser
  • I. Moore
  • Ch. Geppert
  • for the LASPEC Collaboration
Article

Abstract

We give a short summary on new developments in collinear laser spectroscopy since the appearance of the Technical Design Report (TDR) of MATS & LASPEC that will be also of relevance for laser spectrosopcopy at FAIR’s Super-Fragment Separator.

Keywords

Collinear laser spectroscopy Nuclear ground state properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheal, B., Flanagan, K.T.: Progress in laser spectroscopy at radioactive ion beam facilities. J. Phys. G 37, 113101 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Blaum, K., Dilling, J., Nörtershäuser, W.: Precision Atomic Physics Techniques for Nuclear Physics with Radioactive Beams. Physica Scripta T152, 014017 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Nörtershäuser, W., Campbell, P., the LaSpec Collaboration: LaSpec at FAIRS low energy beamline: a new perspective for laser spectroscopy of radioactive nuclei. Hyperf. Int. 171, 149 (2006)CrossRefGoogle Scholar
  4. 4.
    Rodriguez, D., et al.: MATS and LaSpec: high-precision experiments using ion traps and lasers at FAIR. Europ. Phys. J. Spec. Top. 183, 1 (2010). Hyperf. Int. 171, 149 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Herfurth, F., et al.: A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instr. Meth. Phys. Res. A 469, 254 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Nieminen, A., et al.: On-line ion cooling and bunching for collinear laser spectroscopy. Phys. Rev. Lett. 88, 094801 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Campbell, P., et al.: Laser spectroscopy of cooled zirconium fission fragments. Phys. Rev. Lett. 89, 082501 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Flanagan, K.T., et al.: Nuclear Spins and Magnetic Moments of Cu-71,Cu-73,Cu-75: inversion of π 2p 3/2 and π 1f 5/2 Levels in Cu-75. Phys. Rev. Lett. 103, 142501 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Flanagan, K.T., et al.: Experimental determination of an I = 2 ground state in 72Cu, 74Cu. Phys. Rev. C 82, 041302R (2010)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Vingerhoets, P., et al.: Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects. Phys. Rev. C 82, 064311 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Vingerhoets, P., et al.: Magnetic and quadrupole moments of neutron deficient 58−62Cu isotopes. Phys. Lett. B. 703, 34 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Cheal, B., et al.: Laser spectroscopy of gallium isotopes beyond N = 50. J. Phys. Conf. Ser. 381, 012071 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Cheal, B., et al.: Discovery of a long-lived low-lying isomeric state in 80Ga. Phys. Rev. C 82, 051302 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Cheal, B., et al.: Nuclear spins and moments of ga isotopes reveal sudden structural changes between N = 40 and N = 50. Phys. Rev. Lett. 104, 252502 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Mane, E., et al.: Ground-state spins and moments of 72,74,76,78Ga nuclei. Phys. Rev. C 84, 024303 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Procter, T.J., et al.: Nuclear mean-square charge radii of 63,64,66,68−82Ga nuclei: no anomalous behavior at N = 32. Phys. Rev. C 86, 034329 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Papuga, J., et al.: Spins and magnetic moments of 49K and 51K: establishing the 1/2+ and 3/2+ level ordering beyond N = 28. Phys. Rev. Lett. 110, 172503 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Yordanov, D.T., et al.: Electromagnetic moments, and isomers of 107−129Cd. Phys. Rev. Lett. 110, 192501 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Mane, E., et al.: First experimental determination of the charge radius of 74Rb and its application in tests of the unitarity of the cabibbo-kobayashi-maskawa matrix. Phys. Rev. Lett. 107, 212502 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Voss, A., et al.: First use of high-frequency intensity modulation of narrow-linewidth laser light and its application in determination of 206,205,204Fr ground-state properties. Phys. Rev. Lett. 111, 122501 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Minamisono, K., et al.: Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL. Nucl. Instr. Meth. Phys. Res. A 709, 85 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Lunney, D., Bachelet, C., Guenaut, C., Henry, S., Sewtz, M.: COLETTE: a linear Paul-trap beam cooler for the on-line mass spectrometer MISTRAL. Nucl. Instr. Meth. Phys. Res. A 598, 379 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Ketelaer, J., et al.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instr. Meth. Phys. Res. A 594, 162 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Beyer, T., et al.: An RFQ cooler and buncher for the TRIGA-SPEC experiment. Appl. Phys. B. doi: 10.1007/s00340-013-5719-4 (2013)
  25. 25.
    Cheal, B., et al.: Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher. Phys. Rev. Lett. 102, 222501 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Baczynska, K., et al.: Nuclear spin determination of 100m Y by collinear laser spectroscopy of optically pumped ions. J. Phys. G 37, 105103 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Charlwood, F.C., et al.: Ground state properties of manganese isotopes across the N = 28 shell closure. Phys. Lett. B 690, 346 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Reinhed, P., et al.: Cryogenic keV ion-beam storage in ConeTrap - A tool for ion-temperature control. Nucl. Instr. Meth. Phys. Res. A 621, 83 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Klose, A., et al.: Tests of atomic charge-exchange cells for collinear laser spectroscopy. Nucl. Instr. Meth. Phys. Res. A 678, 114 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Yordanov, D.T., et al.: Nuclear charge radii of 21−32Mg. Phys. Rev. Lett. 108, 042504 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Krieger, A., et al.: Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy. Nucl. Instr. Meth. Phys. Res. A 632, 23 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Will, E., et al.: Demonstration of the two-chamber approach for laser spectroscopic high voltage measurements. these proceedingsGoogle Scholar
  33. 33.
    Krieger, A., et al.: Nuclear charge radius of 12Be. Phys. Rev. Lett. 108, 142501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Procter, T.J., et al.: Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line. J. Phys. Conf. Ser. 381, 012070 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • W. Nörtershäuser
    • 1
  • I. Moore
    • 2
  • Ch. Geppert
    • 1
  • for the LASPEC Collaboration
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhysicsUniversity Of JyväskyläJyväskyläFinland

Personalised recommendations