Advertisement

Hyperfine Interactions

, Volume 226, Issue 1–3, pp 637–642 | Cite as

Sm atomic dynamics in a charge density wave compound SmNiC2

  • Satoshi Tsutsui
  • Susumu Shimomura
  • Yoshitaka Yoda
  • Hisao Kobayashi
  • Hideya Onodera
Article

Abstract

149Sm nuclear resonant inelastic scattering was carried out in a charge density wave compound SmNiC2. We have investigated temperature dependences of the Sm partial phonon density of states and recoil-free fraction at the Sm site and the average sound velocity estimated from the Sm partial density of states. The Sm partial density of states exhibits temperature dependence, suggesting that the phonon modes between 20 and 25 meV may correlate with the charge density wave. Temperature dependence of the recoil-free fraction is difficult to prove the correlation with either the charge density wave or ferromagnetic ordering. The average sound velocity obtained by the Sm partial phonon density of states exhibits temperature dependence, agreeing qualitatively with very recent elastic constant measurements.

Keywords

Nuclear resonant inelastic scattering Charge density wave Ferromagnetism Recoil-free fraction Average sound velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grüner, G.: Density Waves in Solids. Addison-Wesley, Reading (1994)Google Scholar
  2. 2.
    Murase, M., Tobo, A., Onodera, H., Hirano, Y., Hosaka, T., Shimomura, S., Wakabayashi, N.: J. Phys. Soc. Jpn. 73, 2790 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Onodera, H., Uchida, N., Ohashi, M., Yamauchi, H., Yamaguchi, Y., Sato, N.: J. Magn. Magn. Mater. 182, 161 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Mizumaki, M., Kawamura, N., Onodera, H.: Phys. Stat. Sol. C 3, 2767 (2006)CrossRefGoogle Scholar
  5. 5.
    Shimomura, S., Hayashi, C., Asaka, G., Wakabayashi, N., Mizumaki, M., Onodera, H.: Phys. Rev. Lett. 102, 076404 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Lipkin, H.J.: Phys. Rev. B 52, 10073 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Tamura, D., Nakanishi, Y., Kikuchi, S., Ito, T., Nakamura, M., Yoshizawa, M., Shimomura, S.: submitted to J. Phys. Soc. Proc.Google Scholar
  8. 8.
    Sergueev, I., Wille, H.-C., Hermann, R.P., Bessas, D., Shvyd’ko, Y.V., Zajac, M., Rüffer, R.: J. Synchrotron Rad. 18, 802 (2011)CrossRefGoogle Scholar
  9. 9.
    Inoyatov, A.K., Filosofov, D.V., Gorozhankin, V.M., Kovalik, A., Adam, I., Perevoshchikov, L.L., Rysavy, M.: Eur. Phys. J. A 47, 64 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Yoda, Y.: Private communicationGoogle Scholar
  11. 11.
    Kobayashi, H., Yoda, Y., Shirakawa, M., Ochiai, A.: J. Phys. Soc. Jpn. 75, 034602 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Hu, M.Y., Sturhahn, W., Toellner, T.S., Mannheim, P.D., Brown, D.E., Zhao, J., Alp, E.E.: Phys. Rev. B 67, 094304 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Satoshi Tsutsui
    • 1
  • Susumu Shimomura
    • 2
  • Yoshitaka Yoda
    • 1
  • Hisao Kobayashi
    • 3
  • Hideya Onodera
    • 4
  1. 1.Japan Synchrotron Radiation Research InstituteSayoJapan
  2. 2.Faculty of ScienceKyoto Sangyo UniversityKyotoJapan
  3. 3.Graduate School of Materials ScienceUniversity of HyogoKamigoriJapan
  4. 4.Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations